Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, Appl. Phys. Lett. 97, 063304 (2010).
2. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, Appl. Phys. Lett. 89, 191124 (2006).
3. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, IEEE Phot. Tech. Lett. 12, 320 (2000).
4. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
5. K. J. Vahala, Nature (London) 424, 839 (2003).
6. T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. Lett. 103, 027406 (2009).
7. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
8. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2011).
9. M. Metcalfe, A. Muller, G. S. Solomon, and J. Lawell, J. Opt. Soc. Am. B 26, 2308 (2009).
10. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
11. J. Schafer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, Nano Lett. 8, 1709 (2008).
12. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, Adv. Mater. 17, 1131 (2005).
13. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature (London) 443, 671 (2006).
14. S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, Appl. Phys. Lett. 85, 6101 (2004).
15. Y. P. Rakovich, L. Yang, E. M. McCabe, J. F. Donegan, T. Perova, A. Moore, N. Gaponik, and A. Rogach, Semicond. Sci. Technol. 18, 914 (2003).
16. Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, and D. K. Okorokov, JETP Lett. 54, 442 (1991).
17. N. N. Ledentsov, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maksimov, I. G. Tabatadze, and P. S. Kopev, Semiconductors 28, 832 (1994).
18. V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000).
19. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science 287, 1011 (2000).
20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).
21. A. Y. Nazzal, X. Wang, L. Qu, W. Yu, Y. Wang, X. Peng, M. Xiao, J. Phys. Chem. B 108, 5507 (2004).
22. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
23. B. O. Dabbousi, J. R. Viego, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
24. R. Sharma, Ph.D. thesis, Max-Planck Institute of Light, Erlangen Nurnberg, 2009.
25. V. Esch, B. Fluegel, G. Khitrova, H. M. Gibbs, Xu. Jiajin, K. Kang, S. W. Koch, L. C. Liu, S. H. Risbud, and N. Peyghambarian, Phys. Rev. B 42, 7450 (1990).
26. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. D. M. Donega, and A. Meijerink, J. Phys. Chem. B 105, 8281 (2001).
27. W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, and A. Meijerink, ChemPhysChem 3, 871 (2002).<871::AID-CPHC871>3.0.CO;2-T
28. Y. Zhao, C. Riemersma, F. Pietra, R. Koole, M. Donega, and A. Meijerink, ACS Nano 6, 9058 (2012).
29. M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher, and D. J. Nesbitt, Phys. Rev. B 67, 125304 (2003).
30. A. L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).
31. R. M. Waxler, D. Horowitz, and A. Feldman, Appl. Opt. 18, 101 (1979).

Data & Media loading...


Article metrics loading...



We report on a simple route to the efficient coupling of optical emission from strongly confining bare core CdTe quantum dots (QDs) to the eigenmodes of a micro-resonator. The quantum emitters are embedded into QD/polymer sandwich microdisk cavities. This prevents photo-oxidation and yields the high dot concentration necessary to overcome Auger enhanced surface trapping of carriers. In combination with the very high cavity Q-factors, interaction of the QDs with the cavity modes in the weak coupling regime is readily observed. Under nanosecond pulsed excitation the CdTe QDs in the microdisks show lasing with a threshold energy as low as 0.33 J.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd