Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, Appl. Phys. Lett. 97, 063304 (2010).
2. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, Appl. Phys. Lett. 89, 191124 (2006).
3. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, IEEE Phot. Tech. Lett. 12, 320 (2000).
4. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
5. K. J. Vahala, Nature (London) 424, 839 (2003).
6. T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. Lett. 103, 027406 (2009).
7. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
8. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2011).
9. M. Metcalfe, A. Muller, G. S. Solomon, and J. Lawell, J. Opt. Soc. Am. B 26, 2308 (2009).
10. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
11. J. Schafer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, Nano Lett. 8, 1709 (2008).
12. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, Adv. Mater. 17, 1131 (2005).
13. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature (London) 443, 671 (2006).
14. S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, Appl. Phys. Lett. 85, 6101 (2004).
15. Y. P. Rakovich, L. Yang, E. M. McCabe, J. F. Donegan, T. Perova, A. Moore, N. Gaponik, and A. Rogach, Semicond. Sci. Technol. 18, 914 (2003).
16. Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, and D. K. Okorokov, JETP Lett. 54, 442 (1991).
17. N. N. Ledentsov, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maksimov, I. G. Tabatadze, and P. S. Kopev, Semiconductors 28, 832 (1994).
18. V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000).
19. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science 287, 1011 (2000).
20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).
21. A. Y. Nazzal, X. Wang, L. Qu, W. Yu, Y. Wang, X. Peng, M. Xiao, J. Phys. Chem. B 108, 5507 (2004).
22. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
23. B. O. Dabbousi, J. R. Viego, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
24. R. Sharma, Ph.D. thesis, Max-Planck Institute of Light, Erlangen Nurnberg, 2009.
25. V. Esch, B. Fluegel, G. Khitrova, H. M. Gibbs, Xu. Jiajin, K. Kang, S. W. Koch, L. C. Liu, S. H. Risbud, and N. Peyghambarian, Phys. Rev. B 42, 7450 (1990).
26. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. D. M. Donega, and A. Meijerink, J. Phys. Chem. B 105, 8281 (2001).
27. W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, and A. Meijerink, ChemPhysChem 3, 871 (2002).<871::AID-CPHC871>3.0.CO;2-T
28. Y. Zhao, C. Riemersma, F. Pietra, R. Koole, M. Donega, and A. Meijerink, ACS Nano 6, 9058 (2012).
29. M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher, and D. J. Nesbitt, Phys. Rev. B 67, 125304 (2003).
30. A. L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).
31. R. M. Waxler, D. Horowitz, and A. Feldman, Appl. Opt. 18, 101 (1979).

Data & Media loading...


Article metrics loading...



We report on a simple route to the efficient coupling of optical emission from strongly confining bare core CdTe quantum dots (QDs) to the eigenmodes of a micro-resonator. The quantum emitters are embedded into QD/polymer sandwich microdisk cavities. This prevents photo-oxidation and yields the high dot concentration necessary to overcome Auger enhanced surface trapping of carriers. In combination with the very high cavity Q-factors, interaction of the QDs with the cavity modes in the weak coupling regime is readily observed. Under nanosecond pulsed excitation the CdTe QDs in the microdisks show lasing with a threshold energy as low as 0.33 J.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd