Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/1/10.1063/1.4862696
1.
1. M. Einax, W. Dieterich, and P. Maass, Rev. Mod. Phys. 85, 921 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.921
2.
2. R. P. Sear, Int. Mater. Rev. 57, 328 (2012).
http://dx.doi.org/10.1179/1743280411Y.0000000015
3.
3. H. Brune, Surf. Sci. Rep. 31, 125 (1998).
http://dx.doi.org/10.1016/S0167-5729(99)80001-6
4.
4. J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. 61, 1 (2006).
http://dx.doi.org/10.1016/j.surfrep.2005.08.004
5.
5. P. A. Mulheran, D. Pellenc, R. A. Bennett, R. J. Green, and M. Sperrin, Phys. Rev. Lett. 100, 068102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.068102
6.
6. K. Kubiak-Ossowska and P. A. Mulheran, Langmuir 28, 15577 (2012).
http://dx.doi.org/10.1021/la303323r
7.
7. D. Quigley, P. M. Rodger, C. L. Freeman, J. H. Harding, and D. M. Duffy, J. Chem. Phys. 131, 094703 (2009).
http://dx.doi.org/10.1063/1.3212092
8.
8. D. D. Vvedensky, J. Phys.: Condens. Matter 16, R1537 (2004).
http://dx.doi.org/10.1088/0953-8984/16/50/R01
9.
9. M. Basham, F. Montalenti, and P. A. Mulheran, Phys. Rev. B 73, 045422 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045422
10.
10. T. Konishi and S. Tsukamoto, Surf. Sci. 605, L1 (2011).
http://dx.doi.org/10.1016/j.susc.2010.12.034
11.
11. P. A. Mulheran, Europhys. Lett. 65, 379 (2004).
http://dx.doi.org/10.1209/epl/i2003-10098-x
12.
12. P. Kratzer and M. Scheffler, Phys. Rev. Lett. 88, 036102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.036102
13.
13. M. Itoh, G. R. Bell, A. R. Avery, T. S. Jones, B. A. Joyce, and D. D. Vvedensky, Phys. Rev. Lett. 81, 633 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.633
14.
14. T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Phys. Rev. B 66, 201302(R) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.201302
15.
15. N. R. Wilson et al., ACS Nano 3, 2547 (2009).
http://dx.doi.org/10.1021/nn900694t
16.
16. P. Pandey, G. R. Bell, J. P. Rourke, A. M. Sanchez, M. D. Elkin, B. J. Hickey, and N. R. Wilson, Small 7, 3202 (2011).
http://dx.doi.org/10.1002/smll.201101430
17.
17. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature (London) 490, 192 (2012).
http://dx.doi.org/10.1038/nature11458
18.
18. M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
http://dx.doi.org/10.1002/lpor.200810003
19.
19. M.-A. Neouze, J. Mater. Sci. 48, 7321 (2013).
http://dx.doi.org/10.1007/s10853-013-7542-z
20.
20. P. A. Pandey, N. R. Wilson, and J. A. Covington, Sens. Actuators 183, 478 (2013).
http://dx.doi.org/10.1016/j.snb.2013.03.089
21.
21. J. Niu, Y. J. Shin, Y. Lee, J.-H. Ahn, and H. Yang, Appl. Phys. Lett. 100, 061116 (2012).
http://dx.doi.org/10.1063/1.3683534
22.
22. J. Schindelin et al., Nat. Methods 9, 676 (2012).
http://dx.doi.org/10.1038/nmeth.2019
23.
23. Y. A. Kryukov and J. G. Amar, Phys. Rev. E 83, 041611 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.041611
24.
24. P. A. Mulheran and M. Basham, Phys. Rev. B 77, 075427 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075427
25.
25. P. A. Mulheran and D. A. Robbie, Phys. Rev. B 64, 115402 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.115402
26.
26. J.-M. Wen, S.-L. Chang, J. W. Burnett, J. W. Evans, and P. A. Thiel, Phys. Rev. Lett. 73, 2591 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2591
27.
27. C. DeW. Van Siclen, Phys. Rev. Lett. 75, 1574 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1574
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4862696 for an AVI-format movie of the KMC model at optimized parameters. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4862696
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4862696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4862696
2014-01-24
2016-12-07

Abstract

Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4862696.html;jsessionid=qJOBNtpF2wRLGjbycCS1w4s0.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4862696&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/1/10.1063/1.4862696&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/1/10.1063/1.4862696'
Top,Right1,Right2,Right3,