Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/1/10.1063/1.4863075
1.
1. J. J. Richardson, D. Estrada, S. P. DenBaars, C. J. Hawker, and L. M. Campos, J. Mater. Chem. 21, 14417 (2011).
http://dx.doi.org/10.1039/c1jm13167b
2.
2. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Appl. Phys. Lett. 76, 1689 (2000).
http://dx.doi.org/10.1063/1.126137
3.
3. Y.-J. Kim, C.-H. Lee, Y. J. Hong, G.-C. Yi, S. S. Kim, and H. Cheong, Appl. Phys. Lett. 89, 163128 (2006).
http://dx.doi.org/10.1063/1.2364162
4.
4. I. Aharonovich, J. C. Lee, A. P. Magyar, D. O. Bracher, and E. L. Hu, Laser Photon. Rev. 7, L61 (2013).
http://dx.doi.org/10.1002/lpor.201300065
5.
5. D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, Adv. Funct. Mater. 16, 799 (2006).
http://dx.doi.org/10.1002/adfm.200500817
6.
6. S. Murad, M. Rahman, N. Johnson, S. Thoms, S. P. Beaumont, and C. D. W. Wilkinson, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 14, 3658 (1996).
http://dx.doi.org/10.1116/1.588745
7.
7. J. S. Park, H. J. Park, Y. B. Hahn, G.-C. Yi, and A. Yoshikawa, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21, 800 (2003).
http://dx.doi.org/10.1116/1.1563252
8.
8. E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, Appl. Phys. Lett. 85, 5179 (2004).
http://dx.doi.org/10.1063/1.1829167
9.
9. J. C. Lee, A. P. Magyar, D. O. Bracher, I. Aharonovich, and E. L. Hu, Diam. Relat. Mater. 33, 45 (2013).
http://dx.doi.org/10.1016/j.diamond.2012.12.008
10.
10. H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, Appl. Phys. Lett. 85, 4385 (2004).
http://dx.doi.org/10.1063/1.1811393
11.
11. A. Krost, J. Christen, N. Oleynik, A. Dadgar, S. Deiter, J. Bläsing, A. Krtschil, D. Forster, F. Bertram, and A. Diez, Appl. Phys. Lett. 85, 1496 (2004).
http://dx.doi.org/10.1063/1.1785871
12.
12. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
13.
13. L. Schmidt-Mende and J. L. Macmanus-Driscoll, Mater. Today 10, 40 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70078-0
14.
14. J. H. Joo, K. J. Greenberg, M. Baram, D. R. Clarke, and E. L. Hu, Cryst. Growth Des. 13, 986 (2013).
http://dx.doi.org/10.1021/cg301582a
15.
15. J. J. Richardson and F. F. Lange, J. Mater. Chem. 21, 1859 (2011).
http://dx.doi.org/10.1039/c0jm02907f
16.
16. D. Andeen, L. Loeffler, N. Padture, and F. F. Lange, J. Cryst. Growth 259, 103 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01589-6
17.
17. D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, Appl. Phys. Express 2, 042101 (2009).
http://dx.doi.org/10.1143/APEX.2.042101
18.
18. J. J. Richardson and F. F. Lange, Cryst. Growth Des. 9, 2570 (2009).
http://dx.doi.org/10.1021/cg900082u
19.
19. S. I. Wright and M. M. Nowell, Microsc. Microanal. 12, 72 (2006).
http://dx.doi.org/10.1017/S1431927606060090
20.
20. T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, and B. Mckenzie, J. Am. Chem. Soc. 129, 15786 (2007).
http://dx.doi.org/10.1021/ja071209g
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4863075
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4863075
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4863075
2014-01-28
2016-12-06

Abstract

We study low temperature (90 °C) aqueous growth of single crystal zinc oxide structures through patterned PMMA molds of different sizes, shapes, and orientations. We demonstrate the ability to create 3D shapes with smooth vertical sidewalls. Although the unconstrained growth is influenced by the hexagonal geometry of the underlying crystal structure, the ZnO is shown to conform exactly to any shape patterned. Using electron backscatter diffraction and scanning electron microscopy we show that the mold orientation, in conjunction with control of the growth rates of the c and m planes of the ZnO, is crucial in determining the final structure shape.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4863075.html;jsessionid=7mk2vTnbxPSEI67ZA9QCIgcS.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4863075&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/1/10.1063/1.4863075&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/1/10.1063/1.4863075'
Top,Right1,Right2,Right3,