NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Constrained, aqueous growth of three-dimensional single crystalline zinc oxide structures
Rent this article for
Access full text Article
1. J. J. Richardson, D. Estrada, S. P. DenBaars, C. J. Hawker, and L. M. Campos, J. Mater. Chem. 21, 14417 (2011).
2. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Appl. Phys. Lett. 76, 1689 (2000).
3. Y.-J. Kim, C.-H. Lee, Y. J. Hong, G.-C. Yi, S. S. Kim, and H. Cheong, Appl. Phys. Lett. 89, 163128 (2006).
4. I. Aharonovich, J. C. Lee, A. P. Magyar, D. O. Bracher, and E. L. Hu, Laser Photon. Rev. 7, L61 (2013).
5. D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, Adv. Funct. Mater. 16, 799 (2006).
6. S. Murad, M. Rahman, N. Johnson, S. Thoms, S. P. Beaumont, and C. D. W. Wilkinson, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 14, 3658 (1996).
7. J. S. Park, H. J. Park, Y. B. Hahn, G.-C. Yi, and A. Yoshikawa, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21, 800 (2003).
8. E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, Appl. Phys. Lett. 85, 5179 (2004).
9. J. C. Lee, A. P. Magyar, D. O. Bracher, I. Aharonovich, and E. L. Hu, Diam. Relat. Mater. 33, 45 (2013).
10. H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, Appl. Phys. Lett. 85, 4385 (2004).
11. A. Krost, J. Christen, N. Oleynik, A. Dadgar, S. Deiter, J. Bläsing, A. Krtschil, D. Forster, F. Bertram, and A. Diez, Appl. Phys. Lett. 85, 1496 (2004).
12. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
13. L. Schmidt-Mende and J. L. Macmanus-Driscoll, Mater. Today 10, 40 (2007).
14. J. H. Joo, K. J. Greenberg, M. Baram, D. R. Clarke, and E. L. Hu, Cryst. Growth Des. 13, 986 (2013).
15. J. J. Richardson and F. F. Lange, J. Mater. Chem. 21, 1859 (2011).
16. D. Andeen, L. Loeffler, N. Padture, and F. F. Lange, J. Cryst. Growth 259, 103 (2003).
17. D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, Appl. Phys. Express 2, 042101 (2009).
18. J. J. Richardson and F. F. Lange, Cryst. Growth Des. 9, 2570 (2009).
19. S. I. Wright and M. M. Nowell, Microsc. Microanal. 12, 72 (2006).
20. T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, and B. Mckenzie, J. Am. Chem. Soc. 129, 15786 (2007).

Data & Media loading...


Article metrics loading...



We study low temperature (90 °C) aqueous growth of single crystal zinc oxide structures through patterned PMMA molds of different sizes, shapes, and orientations. We demonstrate the ability to create 3D shapes with smooth vertical sidewalls. Although the unconstrained growth is influenced by the hexagonal geometry of the underlying crystal structure, the ZnO is shown to conform exactly to any shape patterned. Using electron backscatter diffraction and scanning electron microscopy we show that the mold orientation, in conjunction with control of the growth rates of the c and m planes of the ZnO, is crucial in determining the final structure shape.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Constrained, aqueous growth of three-dimensional single crystalline zinc oxide structures