1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Constrained, aqueous growth of three-dimensional single crystalline zinc oxide structures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4863075
1.
1. J. J. Richardson, D. Estrada, S. P. DenBaars, C. J. Hawker, and L. M. Campos, J. Mater. Chem. 21, 14417 (2011).
http://dx.doi.org/10.1039/c1jm13167b
2.
2. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Appl. Phys. Lett. 76, 1689 (2000).
http://dx.doi.org/10.1063/1.126137
3.
3. Y.-J. Kim, C.-H. Lee, Y. J. Hong, G.-C. Yi, S. S. Kim, and H. Cheong, Appl. Phys. Lett. 89, 163128 (2006).
http://dx.doi.org/10.1063/1.2364162
4.
4. I. Aharonovich, J. C. Lee, A. P. Magyar, D. O. Bracher, and E. L. Hu, Laser Photon. Rev. 7, L61 (2013).
http://dx.doi.org/10.1002/lpor.201300065
5.
5. D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, Adv. Funct. Mater. 16, 799 (2006).
http://dx.doi.org/10.1002/adfm.200500817
6.
6. S. Murad, M. Rahman, N. Johnson, S. Thoms, S. P. Beaumont, and C. D. W. Wilkinson, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 14, 3658 (1996).
http://dx.doi.org/10.1116/1.588745
7.
7. J. S. Park, H. J. Park, Y. B. Hahn, G.-C. Yi, and A. Yoshikawa, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21, 800 (2003).
http://dx.doi.org/10.1116/1.1563252
8.
8. E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, Appl. Phys. Lett. 85, 5179 (2004).
http://dx.doi.org/10.1063/1.1829167
9.
9. J. C. Lee, A. P. Magyar, D. O. Bracher, I. Aharonovich, and E. L. Hu, Diam. Relat. Mater. 33, 45 (2013).
http://dx.doi.org/10.1016/j.diamond.2012.12.008
10.
10. H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, Appl. Phys. Lett. 85, 4385 (2004).
http://dx.doi.org/10.1063/1.1811393
11.
11. A. Krost, J. Christen, N. Oleynik, A. Dadgar, S. Deiter, J. Bläsing, A. Krtschil, D. Forster, F. Bertram, and A. Diez, Appl. Phys. Lett. 85, 1496 (2004).
http://dx.doi.org/10.1063/1.1785871
12.
12. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
13.
13. L. Schmidt-Mende and J. L. Macmanus-Driscoll, Mater. Today 10, 40 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70078-0
14.
14. J. H. Joo, K. J. Greenberg, M. Baram, D. R. Clarke, and E. L. Hu, Cryst. Growth Des. 13, 986 (2013).
http://dx.doi.org/10.1021/cg301582a
15.
15. J. J. Richardson and F. F. Lange, J. Mater. Chem. 21, 1859 (2011).
http://dx.doi.org/10.1039/c0jm02907f
16.
16. D. Andeen, L. Loeffler, N. Padture, and F. F. Lange, J. Cryst. Growth 259, 103 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01589-6
17.
17. D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, Appl. Phys. Express 2, 042101 (2009).
http://dx.doi.org/10.1143/APEX.2.042101
18.
18. J. J. Richardson and F. F. Lange, Cryst. Growth Des. 9, 2570 (2009).
http://dx.doi.org/10.1021/cg900082u
19.
19. S. I. Wright and M. M. Nowell, Microsc. Microanal. 12, 72 (2006).
http://dx.doi.org/10.1017/S1431927606060090
20.
20. T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, and B. Mckenzie, J. Am. Chem. Soc. 129, 15786 (2007).
http://dx.doi.org/10.1021/ja071209g
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4863075
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4863075
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4863075
2014-01-28
2014-09-02

Abstract

We study low temperature (90 °C) aqueous growth of single crystal zinc oxide structures through patterned PMMA molds of different sizes, shapes, and orientations. We demonstrate the ability to create 3D shapes with smooth vertical sidewalls. Although the unconstrained growth is influenced by the hexagonal geometry of the underlying crystal structure, the ZnO is shown to conform exactly to any shape patterned. Using electron backscatter diffraction and scanning electron microscopy we show that the mold orientation, in conjunction with control of the growth rates of the c and m planes of the ZnO, is crucial in determining the final structure shape.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4863075.html;jsessionid=26kocbldl3c1p.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4863075&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Constrained, aqueous growth of three-dimensional single crystalline zinc oxide structures
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4863075
10.1063/1.4863075
SEARCH_EXPAND_ITEM