Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A. 102, 1045110453 (2005).
2.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
3.W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791797 (2012).
4.A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 12711275 (2010).
5.J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 16 (2013).
6.A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634638 (2013).
7.W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
8.G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B 88, 085433 (2013).
9.Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, and Z.-X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111115 (2013).
10.B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2,” Nano Lett. 13, 4214 (2013).
11.G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, and K. Watanabe, “Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures,” ACS Nano 7, 79317936 (2013).
12.J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, and T. Takenobu, “Highly flexible MoS2 thinfilm transistors with ion gel dielectrics,” Nano Lett. 12, 40134017 (2012).
13.Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, and X. Zhang, “Exciton-dominant electroluminescence from a diode of monolayer MoS2,” Appl. Phys. Lett. 104, 193508 (2014).
14.R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, Ph. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13, 14161421 (2014).
15.J. Ross, P. Klement, A. Jones, N. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. Cobden, and X. Xu, “Electrically tunable excitonic light emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9, 268272 (2014).
16.Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa, “Electrically switchable chiral light-emitting transistor,” Science 344, 725728 (2014).
17.B. Baugher, H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262267 (2014).
18.A. Pospischil, M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9, 257261 (2014).
19.D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
20.T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
21.H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490493 (2012).
22.K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494498 (2012).
23.A. M. Jones, H. Yu, J. Ross, P. Klement, N. Ghimire, J. Yan, D. Mandrus, W. Yao, and X. Xu, “Spin layer locking effects in optical orientation of exciton spin in bilayer WSe2,” Nat. Phys. 10, 130134 (2013).
24.K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene anologues,” Angew. Chem. Int. Ed. Engl. 50, 1083910842 (2011).
25.G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 12, 27842791 (2012).
26.Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, “Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2,” Chem. Lett. 30, 772773 (2001).
27.H. Hadouda, J. Pouzet, J. C. Bernede, and A. Barreau, “MoS2 thin film synthesis by soft sulfurization of a molybdenum layer,” Mater. Chem. Phys. 42, 291297 (1995).
28.C. Huang, S. Wu, A. Sanchez, R. Beanland, D. Cobden, and X. Xu, “Vapor-solid growth of monolayer MoSe2-WSe2 junctions,” Nat. Mater. (published online).
29.S. Balendhran, S. Walia, H. Nili, J. Ou, S. Zhuiykov, R. Kaner, S. Sriram, M. Bhaskaran, and K. Kalantar-zadeh, “Two-dimensional molybdenum trioxide and dichalcogenides,” Adv. Func. Mater. 23, 39523970 (2013).
30.A. Van Der Zande, P. Huang, D. Chenet, T. Berkelbach, Y. You, G. Lee, T. Heinz, D. Reichman, D. Muller, and J. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554561 (2013).
31.S. Wu, C. Huang, G. Aivazian, J. Ross, D. Cobden, and X. Xu, “Vapor-solid growth of high optical quality MoS2 monolayer with near-unity valley polarization,” ACS Nano 7, 27682772 (2013).
32.Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Hwang, Y. Cui, and L. Zhongfan, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano 7, 89638971 (2013).
33.Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, and J. Kong, “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces,” Nano Lett. 13, 18521857 (2013).
34.K. Liu, W. Zhang, Y. Lee, Y. Lin, M. Chang, C. Su, C. Chang, H. Li, Y. Shi, H. Zhang, C. Lai, and L. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12, 15381544 (2012).
35.S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers,” Nano Lett. 14, 31853190 (2014).
36.S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. Yakobsen, J.-C. Idrobo, P. Ajayan, and J. Lou, “Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers,” Nat. Mater. 12, 745759 (2013).
37.S. Tongay, D. Narang, J. Kang, W. Fan, C. Ko, A. Luce, D. Wang, J. Suh, K. Patel, V. Pathak, J. Li, and J. Wu, “Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2,” Appl. Phys. Lett. 104, 012101 (2014).
38.H. Gutierrez, N. Perea-Lopez, A. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V. Crespi, H. Terrones, and M. Terrones, “Extraordinary room temperature photoluminescence in WSe2 monolayers,” Nano Lett. 13, 34473454 (2013).
39.A. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. Long, T. Hayashi, Y. Kim, M. Endo, H. Gutierrez, N. Pradhan, L. Balicas, T. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large area WS2 sheets: From single layer to few layers,” ACS Nano 7, 52355242 (2013).
40.J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large area synthesis of highly crystalline WSe2 and device applications,” ACS Nano 8, 923930 (2014).
41.Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. Lee, C. Sun, L. Calderin, P. Browning, M. Bresnehan, M. Kim, T. Mayer, M. Terrones, and J. Robinson, “Direct synthesis of van der Waals solids,” ACS Nano 8, 37153723 (2014).
42.K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property,” Nanotechnology 24, 465705 (2013).

Data & Media loading...


Article metrics loading...



Monolayertransition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe sheets of up to 30 m in edge length on insulating SiO substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayersgrown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd