Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/10/10.1063/1.4896591
1.
1.K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A. 102, 1045110453 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
2.
2.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
3.
3.W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791797 (2012).
http://dx.doi.org/10.1021/nn305275h
4.
4.A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 12711275 (2010).
http://dx.doi.org/10.1021/nl903868w
5.
5.J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 16 (2013).
http://dx.doi.org/10.1038/ncomms2498
6.
6.A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634638 (2013).
http://dx.doi.org/10.1038/nnano.2013.151
7.
7.W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, “Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106801
8.
8.G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B 88, 085433 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085433
9.
9.Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, and Z.-X. Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2,” Nat. Nanotechnol. 9, 111115 (2013).
http://dx.doi.org/10.1038/nnano.2013.277
10.
10.B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2,” Nano Lett. 13, 4214 (2013).
http://dx.doi.org/10.1021/nl401916s
11.
11.G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, and K. Watanabe, “Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures,” ACS Nano 7, 79317936 (2013).
http://dx.doi.org/10.1021/nn402954e
12.
12.J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, and T. Takenobu, “Highly flexible MoS2 thinfilm transistors with ion gel dielectrics,” Nano Lett. 12, 40134017 (2012).
http://dx.doi.org/10.1021/nl301335q
13.
13.Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, and X. Zhang, “Exciton-dominant electroluminescence from a diode of monolayer MoS2,” Appl. Phys. Lett. 104, 193508 (2014).
http://dx.doi.org/10.1063/1.4875959
14.
14.R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, Ph. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13, 14161421 (2014).
http://dx.doi.org/10.1021/nl400516a
15.
15.J. Ross, P. Klement, A. Jones, N. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. Cobden, and X. Xu, “Electrically tunable excitonic light emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9, 268272 (2014).
http://dx.doi.org/10.1038/nnano.2014.26
16.
16.Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa, “Electrically switchable chiral light-emitting transistor,” Science 344, 725728 (2014).
http://dx.doi.org/10.1126/science.1251329
17.
17.B. Baugher, H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9, 262267 (2014).
http://dx.doi.org/10.1038/nnano.2014.25
18.
18.A. Pospischil, M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9, 257261 (2014).
http://dx.doi.org/10.1038/nnano.2014.14
19.
19.D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
20.
20.T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
http://dx.doi.org/10.1038/ncomms1882
21.
21.H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490493 (2012).
http://dx.doi.org/10.1038/nnano.2012.95
22.
22.K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494498 (2012).
http://dx.doi.org/10.1038/nnano.2012.96
23.
23.A. M. Jones, H. Yu, J. Ross, P. Klement, N. Ghimire, J. Yan, D. Mandrus, W. Yao, and X. Xu, “Spin layer locking effects in optical orientation of exciton spin in bilayer WSe2,” Nat. Phys. 10, 130134 (2013).
http://dx.doi.org/10.1038/nphys2848
24.
24.K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene anologues,” Angew. Chem. Int. Ed. Engl. 50, 1083910842 (2011).
http://dx.doi.org/10.1002/anie.201105364
25.
25.G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 12, 27842791 (2012).
http://dx.doi.org/10.1021/nl2044887
26.
26.Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, “Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2,” Chem. Lett. 30, 772773 (2001).
http://dx.doi.org/10.1246/cl.2001.772
27.
27.H. Hadouda, J. Pouzet, J. C. Bernede, and A. Barreau, “MoS2 thin film synthesis by soft sulfurization of a molybdenum layer,” Mater. Chem. Phys. 42, 291297 (1995).
http://dx.doi.org/10.1016/0254-0584(96)80017-4
28.
28.C. Huang, S. Wu, A. Sanchez, R. Beanland, D. Cobden, and X. Xu, “Vapor-solid growth of monolayer MoSe2-WSe2 junctions,” Nat. Mater. (published online).
http://dx.doi.org/10.1038/nmat4064
29.
29.S. Balendhran, S. Walia, H. Nili, J. Ou, S. Zhuiykov, R. Kaner, S. Sriram, M. Bhaskaran, and K. Kalantar-zadeh, “Two-dimensional molybdenum trioxide and dichalcogenides,” Adv. Func. Mater. 23, 39523970 (2013).
http://dx.doi.org/10.1002/adfm.201300125
30.
30.A. Van Der Zande, P. Huang, D. Chenet, T. Berkelbach, Y. You, G. Lee, T. Heinz, D. Reichman, D. Muller, and J. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12, 554561 (2013).
http://dx.doi.org/10.1038/nmat3633
31.
31.S. Wu, C. Huang, G. Aivazian, J. Ross, D. Cobden, and X. Xu, “Vapor-solid growth of high optical quality MoS2 monolayer with near-unity valley polarization,” ACS Nano 7, 27682772 (2013).
http://dx.doi.org/10.1021/nn4002038
32.
32.Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Hwang, Y. Cui, and L. Zhongfan, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano 7, 89638971 (2013).
http://dx.doi.org/10.1021/nn403454e
33.
33.Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, and J. Kong, “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces,” Nano Lett. 13, 18521857 (2013).
http://dx.doi.org/10.1021/nl400687n
34.
34.K. Liu, W. Zhang, Y. Lee, Y. Lin, M. Chang, C. Su, C. Chang, H. Li, Y. Shi, H. Zhang, C. Lai, and L. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12, 15381544 (2012).
http://dx.doi.org/10.1021/nl2043612
35.
35.S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers,” Nano Lett. 14, 31853190 (2014).
http://dx.doi.org/10.1021/nl500515q
36.
36.S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. Yakobsen, J.-C. Idrobo, P. Ajayan, and J. Lou, “Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers,” Nat. Mater. 12, 745759 (2013).
http://dx.doi.org/10.1038/nmat3673
37.
37.S. Tongay, D. Narang, J. Kang, W. Fan, C. Ko, A. Luce, D. Wang, J. Suh, K. Patel, V. Pathak, J. Li, and J. Wu, “Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2,” Appl. Phys. Lett. 104, 012101 (2014).
http://dx.doi.org/10.1063/1.4834358
38.
38.H. Gutierrez, N. Perea-Lopez, A. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V. Crespi, H. Terrones, and M. Terrones, “Extraordinary room temperature photoluminescence in WSe2 monolayers,” Nano Lett. 13, 34473454 (2013).
http://dx.doi.org/10.1021/nl3026357
39.
39.A. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. Long, T. Hayashi, Y. Kim, M. Endo, H. Gutierrez, N. Pradhan, L. Balicas, T. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large area WS2 sheets: From single layer to few layers,” ACS Nano 7, 52355242 (2013).
http://dx.doi.org/10.1021/nn400971k
40.
40.J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large area synthesis of highly crystalline WSe2 and device applications,” ACS Nano 8, 923930 (2014).
http://dx.doi.org/10.1021/nn405719x
41.
41.Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. Lee, C. Sun, L. Calderin, P. Browning, M. Bresnehan, M. Kim, T. Mayer, M. Terrones, and J. Robinson, “Direct synthesis of van der Waals solids,” ACS Nano 8, 37153723 (2014).
http://dx.doi.org/10.1021/nn5003858
42.
42.K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property,” Nanotechnology 24, 465705 (2013).
http://dx.doi.org/10.1088/0957-4484/24/46/465705
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/10/10.1063/1.4896591
Loading
/content/aip/journal/aplmater/2/10/10.1063/1.4896591
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/10/10.1063/1.4896591
2014-10-03
2016-09-26

Abstract

Monolayertransition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe sheets of up to 30 m in edge length on insulating SiO substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayersgrown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/10/1.4896591.html;jsessionid=vOtDOvUYoAIpcd6GJGkya1a_.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/10/10.1063/1.4896591&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/10/10.1063/1.4896591&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/10/10.1063/1.4896591'
Top,Right1,Right2,Right3,