Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
2.M. Eisterer, Supercond. Sci. Technol. 20, R47 (2007).
3.H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, and K. Yamada, Phys. Rev. Lett. 95, 017003 (2005).
4.G. Blumberg, A. Koitzsch, A. Gozar, B. S. Dennis, C. A. Kendziora, P. Fournier, and R. L. Greene, Phys. Rev. Lett. 88, 107002 (2002).
5.K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding, and T. Takahashi, Proc. Natl. Acad. Sci. U. S. A. 106, 7330 (2009).
6.L. R. Testardi, Rev. Mod. Phys. 47, 637 (1975).
7.L. Y. L. Shen, Phys. Rev. Lett. 29, 1082 (1972).
8.J. Kwo and T. H. Geballe, Physica B 109-110, 1665 (1982).
9.H. Devantay, J. Jorda, M. Decroux, J. Muller, and R. Flükiger, J. Mater. Sci. 16, 2145 (1981).
10.C. Senatore, D. Uglietti, V. Abächerli, A. Junod, and R. Flükiger, IEEE Trans. Appl. Supercond. 17, 2600 (2007).
11.Y. Wang, C. Senatore, V. Abächerli, D. Uglietti, and R. Flükiger, Supercond. Sci. Technol. 19, 263 (2006).
12.L. D. Cooley, C. M. Fischer, P. J. Lee, and D. C. Larbalestier, J. Appl. Phys. 96, 2122 (2004).
13.C. Tarantini, P. J. Lee, N. Craig, A. Ghosh, and D. C. Larbalestier, Supercond. Sci. Technol. 27, 065013 (2014).
14.L. J. Vieland and A. W. Wicklund, Phys. Lett. 23, 223 (1966).
15.A. Junod, J. Muller, H. Rietschel, and E. Schneider, J. Phys. Chem. Solids 39, 317 (1978).
16.G. R. Stewart, B. Cort, and G. W. Webb, Phys. Rev. B: Condens. Matter Mater. Phys. 24, 3841 (1981).
17.G. R. Stewart and B. L. Brandt, Phys. Rev. B: Condens. Matter Mater. Phys. 29, 3908 (1984).
18.V. Guritanu, W. Goldacker, F. Bouquet, Y. Wang, R. Lortz, G. Goll, and A. Junod, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 184526 (2004).
19.M. Marz, G. Goll, W. Goldacker, and R. Lortz, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 024507 (2010).
20.J. Zhou, Y. Jo, Z. H. Sung, H. Zhou, P. J. Lee, and D. C. Larbalestier, Appl. Phys. Lett. 99, 122507 (2011).
21.R. Escudero, F. Morales, and S. Bernes, J. Phys. Condens. Matter 21, 325701 (2009).
22.A. J. Arko, D. H. Lowndes, F. A. Muller, L. W. Roeland, J. Wolfrat, A. T. van Kessel, H. W. Myron, F. M. Mueller, and G. W. Webb, Phys. Rev. Lett. 40, 1590 (1978).
23.T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B: Condens. Matter Mater. Phys. 19, 4545 (1979).
24.J. Charlesworth, I. Macphail, and P. Madsen, J. Mater. Sci. 5, 580 (1970).
25.M. Li, Z. Du, C. Guo, and C. Li, J. Alloys Compd. 477, 104 (2009).
26.C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).
27.H. Padamsee, J. E. Neighbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).

Data & Media loading...


Article metrics loading...



The important influence of multiple gaps in the superconductivity of MgB and Fe-based compounds, especially because of the possibility that manipulation of a second gap can significantly raise the upper critical field , has refocused attention on NbSn because anomalies in both specific heat and point-contact tunneling studies have led to the proposal that NbSn is also a two-gap superconductor. Here, we search for evidence of the second gap in a careful study of the influence of the homogenization temperature on the sample uniformity. We show that it is very difficult to fabricate samples that are both homogeneous and stoichiometric. We find so-called “second-gap” anomalies disappear only after high temperature and long-term annealing. Such a well-annealed sample shows only a strong, electron-phonon-coupled, single-gap behavior. In contrast, samples reacted and annealed at lower temperatures, as in the earlier two-gap studies, show small chemical composition variations of the A15 phase. We propose that the second gap sightings are actually due to variation of within very difficult-to-fully homogenize samples. A curiosity of the A15 NbSn phase is that almost any mixture of Nb and Sn tries to form a stoichiometric A15 composition, but the residue of course contains off-stoichiometric A15, Nb, and other phases when the Nb:Sn ratio departs from the true 3:1 stoichiometry.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd