Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.L. P. Gor’kov and V. Z. Kresin, Phys. Rep. 400, 149 (2004).
2.J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).
3.P. Shuk, A. Vecher, V. Kharton, L. Tichonova, H. Wiemhofer, U. Guth, and W. Gopel, Sens. Actuators, B 15-16, 401 (1993).
4.S. C. Wimbush, M. Li, M. E. Vickers, B. Maiorov, D. M. Feldmann, Q. Jia, and J. L. MacManus-Driscoll, Adv. Funct. Mater. 19, 835 (2009).
5.A. D. Rata, A. Herklotz, K. Nenkov, L. Schultz, and K. Doerr, Phys. Rev. Lett. 100, 76401 (2008).
6.A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature 388, 50 (1997).
7.S. P. Jiang, J. Mater. Sci. 43, 6799 (2008).
8.A. Sawa, Mater. Today 11, 28 (2008).
9.K. Tsubouchi, I. Ohkubo, H. Kumigashira, M. Oshima, Y. Matsumoto, K. Itaka, T. Ohnishi, M. Lippmaa, and H. Koinuma, Adv. Mater. 19, 1711 (2007).
10.C. Jooss, L. Wu, T. Beetz, R. F. Klie, M. Beleggia, M. A. Schofield, S. Schramm, J. Hoffmann, and Y. Zhu, Proc. Natl. Acad. Sci. U. S. A. 104, 13597 (2007).
11.S. Schramm, J. Hoffmann, and C. Jooss, J. Phys.: Condens. Matter 20, 395231 (2008).
12.S. Asanuma, H. Akoh, H. Yamada, and A. Sawa, Phys. Rev. B 80, 235113 (2009).
13.F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, K. Kobayashi, J. Verbeeck, G. Panaccione, and R. Dittmann, Nanoscale 5, 3954 (2013).
14.A. Herpers, C. Lenser, C. Park, F. Offi, F. Borgatti, G. Panaccione, S. Menzel, R. Waser, and R. Dittmann, Adv. Mater. 26, 2730 (2014).
15.D. Reagor, S. Lee, Y. Li, and Q. Jia, J. Appl. Phys. 95, 7971 (2004).
16.A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 86, 112508 (2005).
17.L. Ben Freund and S. Suresh, Thin Film Materials, Stress, Defect Formation and Surface Evolution (Cambridge University Press, 2013).
18.Database ICSD, 2014 available at:
19.J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).
20.H. Peng, B. Zhao, Z. Xie, Y. Lin, B. Zhu, Z. Hao, H. Tao, B. Xu, C. Wang, H. Chen, and F. Wu, Phys. Rev. Lett. 82, 362 (1999).
21.M. Fujimoto, H. Koyama, Y. Nishi, T. Suzuki, S. Kobayashi, Y. Tamai, and N. Awaya, J. Am. Ceram. Soc. 90, 2205 (2007).
22.Y. Wang, S. G. Kim, and I. W. Chen, Acta Mater. 56, 5312 (2008).
23.Y. Zhu, A. Chen, H. Zhou, W. Zhang, J. Narayan, J. L. MacManus-Driscoll, Q. Jia, and H. Wang, APL Mater. 1, 50702 (2013).
24.J. Gazquez, S. Bose, M. Sharma, M. A. Torija, S. J. Pennycook, C. Leighton, and M. Varela, APL Mater. 1, 012105 (2013).
25.Y. B. Chen, M. B. Katz, X. Q. Pan, C. M. Folkman, R. R. Das, and C. B. Eom, Appl. Phys. Lett. 91, 031902 (2007).
26.C. Ma, M. Liu, G. Collins, H. Wang, S. Bao, X. Xu, E. Enriquez, C. Chen, Y. Lin, and M. Whangbo, ACS Appl. Mater. Interfaces 5, 451 (2013).
27.H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
28.M. Noyong, K. Blech, A. Rosenberger, V. Klocke, and U. Simon, Meas. Sci. Technol. 18, N84 (2007).
29.D. Su and Y. Zhu, Ultramicroscopy 110, 229 (2010).
30.S. Kim, S. Lee, Y. Oshima, Y. Kondo, E. Okunishi, N. Endo, J. Jung, G. Byun, S. Lee, and K. Lee, Appl. Phys. Lett. 102, 161604 (2013).
31.J. S. Speck and W. Pompe, J. Appl. Phys. 76, 466 (1994).
32.E. Breckenfeld, A. B. Shah, and L. W. Martin, J. Mater. Chem. C 1, 8052 (2013).
33.J. Q. He, E. Vasco, C. L. Jia, R. Dittmann, and R. H. Wang, J. Appl. Phys. 97, 104907 (2005).
34.H. Jia-Qing, E. Vasco, R. Dittmann, and W. Ren-Hui, Chin. Phys. Lett. 23, 1269 (2006).
35.S. J. Pennycook, H. Zhou, M. F. Chisholm, A. Y. Borisevich, M. Varela, J. Gazquez, T. J. Pennycook, and J. Narayan, Acta Mater. 61, 2725 (2013).
36.A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 064101 (2011).
37.F. Sandiumenge, J. Santiso, L. Balcells, Z. Konstantinovic, J. Roqueta, A. Pomar, J. Pedro Espinos, and B. Martinez, Phys. Rev. Lett. 110, 107206 (2013).
38.W. S. Choi, J. H. Kwon, H. Jeen, J. E. Hamann-Borrero, A. Radi, S. Macke, R. Sutarto, F. He, G. A. Sawatzky, V. Hinkov, M. Kim, and H. N. Lee, Nano Lett. 12, 4966 (2012).
39.L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958), available at:
40.N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon-Press, Oxford, 1971).
41.Y. Lu, J. Klein, F. Herbstritt, J. B. Philipp, A. Marx, and R. Gross, Phys. Rev. B: Condens. Matter Mater. Phys. 73, 184406 (2006).

Data & Media loading...


Article metrics loading...



We investigated the impact of strain relaxation on the current transport of PrCaMnO (PCMO) thin films grown epitaxially on SrTiO single crystals by pulsed laser deposition. The incorporation of misfit dislocations and the formation of cracks are identified as competing mechanisms for the relaxation of the biaxial tensile strain. Crack formation leads to a higher crystal quality within the domains but the cracks disable the macroscopic charge transport through the PCMO layer. Progressive strain relaxation by the incorporation of misfit dislocations, on the other hand, results in a significant decrease of the activation energy for polaron hopping with increasing film thickness.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd