Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4897353
1.
1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 359, 710712 (1992).
http://dx.doi.org/10.1038/359710a0
2.
2.C. Sanchez, C. Boissière, D. Grosso, C. Laberty, and L. Nicole, Chem. Mater. 20, 682737 (2008).
http://dx.doi.org/10.1021/cm702100t
3.
3.A. Taguchi and F. Schüth, Microporous Mesoporous Mater. 77, 145 (2005).
http://dx.doi.org/10.1016/j.micromeso.2004.06.030
4.
4.A. M. Liu, K. Hidajat, S. Kawi, and D. Y. Zhao, Chem. Commun. 2000, 11451146 .
http://dx.doi.org/10.1039/B002661L
5.
5.Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Nature 389, 364368 (1997).
http://dx.doi.org/10.1038/38699
6.
6.C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater. 11, 579585 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
7.
7.A. Gibaud, D. Grosso, B. Smarsly, A. Baptiste, J. F. Bardeau, F. Babonneau, D. A. Doshi, Z. Chen, C. J. Brinker, and C. Sanchez, J. Phys. Chem. B 107, 61146118 (2003).
http://dx.doi.org/10.1021/jp027612l
8.
8.D. Grosso, F. Cagnol, G. J. de A. A. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, and C. Sanchez, Adv. Funct. Mater. 14, 309322 (2004).
http://dx.doi.org/10.1002/adfm.200305036
9.
9.H. De Paz-Simon, A. Chemtob, F. Crest, C. Croutxe-Barghorn, L. Michelin, L. Vidal, S. Rigolet, and B. Lebeau, RSC Adv. 2, 1194411952 (2012).
http://dx.doi.org/10.1039/c2ra21676k
10.
10.A. Hozumi, Y. Yokogawa, T. Kameyama, K. Hiraku, H. Sugimura, O. Takai, and M. Okido, Adv. Mater. 12, 985987 (2000).
http://dx.doi.org/10.1002/1521-4095(200006)12:13<985::AID-ADMA985>3.0.CO;2-#
11.
11.T. Clark, J. D. Ruiz, H. Fan, C. J. Brinker, B. I. Swanson, and A. N. Parikh, Chem. Mater. 12, 38793884 (2000).
http://dx.doi.org/10.1021/cm000456f
12.
12.H. De Paz, A. Chemtob, C. Croutxé-Barghorn, S. Rigolet, and B. Lebeau, Microporous Mesoporous Mater. 151, 8892 (2012).
http://dx.doi.org/10.1016/j.micromeso.2011.10.045
13.
13.H. De Paz-Simon, A. Chemtob, C. Croutxé-Barghorn, S. Rigolet, L. Michelin, L. Vidal, and B. Lebeau, Langmuir 29, 19631969 (2013).
http://dx.doi.org/10.1021/la3030759
14.
14.H. De Paz-Simon, A. Chemtob, C. Croutxé-Barghorn, S. Rigolet, L. Michelin, L. Vidal, and B. Lebeau, J. Phys. Chem. C 118, 49594966 (2014).
http://dx.doi.org/10.1021/jp410518k
15.
15.A. Hozumi, H. Sugimura, K. Hiraku, T. Kameyama, and O. Takai, Chem. Mater. 12, 38423847 (2000).
http://dx.doi.org/10.1021/cm000546k
16.
16.A. Hozumi, H. Sugimura, K. Hiraku, T. Kameyama, and O. Takai, Nano Lett. 1, 395399 (2001).
http://dx.doi.org/10.1021/nl010028o
17.
17.A. Hozumi and T. Kimura, Langmuir 24, 1114111146 (2008).
http://dx.doi.org/10.1021/la801575t
18.
18.A. Hozumi and D. F. Cheng, Mater. Chem. Phys. 129, 464470 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.04.048
19.
19.A. M. Dattelbaum, M. L. Amweg, L. E. Ecke, C. K. Yee, A. P. Shreve, and A. N. Parikh, Nano Lett. 3, 719722 (2003).
http://dx.doi.org/10.1021/nl0341279
20.
20.A. M. Dattelbaum, M. L. Amweg, J. D. Ruiz, L. E. Ecke, A. P. Shreve, and A. N. Parikh, J. Phys. Chem. B 109, 1455114556 (2005).
http://dx.doi.org/10.1021/jp051401+
21.
21.H. De Paz, A. Chemtob, C. Croutxé-Barghorn, D. Le Nouen, and S. Rigolet, J. Phys. Chem. B 116, 5260268 (2012).
http://dx.doi.org/10.1021/jp212386e
22.
22.See Figures S1-S4 in supplementary material at http://dx.doi.org/10.1063/1.4897353 for RT-FTIR, XRD, and TEM data, and a series of IR spectra.[Supplementary Material]
23.
23.J. F. Rabek, Polymer Photodegradation: Mechanisms and Experimental Methods (Chapman and Hall, London UK, 1994), p. 257.
24.
24.S. Morlat and J. L. Gardette, Polymer 42, 60716079 (2001).
http://dx.doi.org/10.1016/S0032-3861(01)00084-2
25.
25.S. Morlat and J. L. Gardette, Polymer 44, 78917897 (2003).
http://dx.doi.org/10.1016/j.polymer.2003.10.022
26.
26.P. de Sainte Claire, Macromolecules 42, 34693482 (2009).
http://dx.doi.org/10.1021/ma802469u
27.
27.G. Gallet, S. Carroccio, P. Rizzarelli, and S. Karlsson, Polymer 43, 10811094 (2002).
http://dx.doi.org/10.1016/S0032-3861(01)00677-2
28.
28.H. Kaczmarek, A. Sionkowska, A. Kaminska, J. Kowalonek, M. Swiatek, and A. Szalla, Polym. Degrad. Stab. 73, 437441 (2001).
http://dx.doi.org/10.1016/S0141-3910(01)00125-2
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4897353
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4897353
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4897353
2014-10-15
2016-09-27

Abstract

In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting in ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4897353.html;jsessionid=SDw7YgiUSp1rzqM5HNfY9SSV.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4897353&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4897353&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4897353'
Top,Right1,Right2,Right3,