Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4897553
1.
1.M. J. Climent, A. Corma, H. Garcia, R. Guil-Lopez, S. Iborra, and V. Fornes, J. Catal. 197, 385 (2001).
http://dx.doi.org/10.1006/jcat.2000.3086
2.
2.Y. Wang, X. C. Wang, and M. Antonietti, Angew. Chem., Int. Ed. 51, 68 (2012).
http://dx.doi.org/10.1002/anie.201101182
3.
3.M. Sasidharan and A. Bhaumik, ACS Appl. Mater. Interfaces 5, 2618 (2013).
http://dx.doi.org/10.1021/am4000326
4.
4.K. Sarkar, K. Dhara, M. Nandi, P. Roy, A. Bhaumik, and P. Banerjee, Adv. Funct. Mater. 19, 223 (2009).
http://dx.doi.org/10.1002/adfm.200800888
5.
5.X. Wan, S. Yao, H. Liu, and Y. Yao, J. Mater. Chem. A 1, 10505 (2013).
http://dx.doi.org/10.1039/c3ta11677h
6.
6.M. Nandi, M. Sarkar, K. Sarkar, and A. Bhaumik, J. Phys. Chem. C 113, 6839 (2009).
http://dx.doi.org/10.1021/jp8114034
7.
7.A. Dutta, M. Nandi, M. Sasidharan, and A. Bhaumik, ChemPhysChem 13, 3218 (2012).
http://dx.doi.org/10.1002/cphc.201200096
8.
8.K. M. Coakley and M. D. McGehee, Appl. Phys. Lett. 83, 3380 (2003).
http://dx.doi.org/10.1063/1.1616197
9.
9.C. Y. Jiang, W. L. Koh, M. Y. Leung, S. Y. Chiam, J. S. Wu, and J. Zhang, Appl. Phys. Lett. 100, 113901 (2012).
http://dx.doi.org/10.1063/1.3693399
10.
10.S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, and T. Tatsumi, Nat. Mater. 2, 801 (2003).
http://dx.doi.org/10.1038/nmat1022
11.
11.N. Pal and A. Bhaumik, Adv. Colloid Interface Sci. 189-190, 21 (2013).
http://dx.doi.org/10.1016/j.cis.2012.12.002
12.
12.H. Yamada, C. Urata, H. Ujiie, Y. Yamauchi, and K. Kuroda, Nanoscale 5, 6145 (2013).
http://dx.doi.org/10.1039/c3nr00334e
13.
13.M. Grätzel, Inorg. Chem. 44, 6841 (2005).
http://dx.doi.org/10.1021/ic0508371
14.
14.S. Fujita and S. Inagaki, Chem. Mater. 20, 891 (2008).
http://dx.doi.org/10.1021/cm702271v
15.
15.M. Nandi, J. Mondal, K. Sarkar, Y. Yamauchi, and A. Bhaumik, Chem. Commun. 47, 6677 (2011).
http://dx.doi.org/10.1039/c1cc11007a
16.
16.S. L. Jain, A. Modak, and A. Bhaumik, Green Chem. 13, 586 (2011).
http://dx.doi.org/10.1039/c0gc00788a
17.
17.Z. Lai, M. Tsapatsis, and J. P. Nicolich, Adv. Funct. Mater. 14, 716 (2004).
http://dx.doi.org/10.1002/adfm.200400040
18.
18.B. Schnell, U. T. Strauss, P. Verdino, K. Faber, and C. O. Kappe, Tetrahedron: Asymmetry 11, 1449 (2000).
http://dx.doi.org/10.1016/S0957-4166(00)00081-1
19.
19.J. P. Wan and Y. Pan, Mini-Rev. Med. Chem. 12, 337 (2012).
http://dx.doi.org/10.2174/138955712799829267
20.
20.C. O. Kappe, Acc. Chem. Res. 33, 879 (2000).
http://dx.doi.org/10.1021/ar000048h
21.
21.J. Azizian, A. A. Mohammadi, A. R. Karimi, and M. R. Mohammadizadeh, Appl. Catal. A 300, 85 (2006).
http://dx.doi.org/10.1016/j.apcata.2005.11.001
22.
22.E. Kolvari, N. Koukabi, and O. Armandpour, Tetrahedron 70, 1383 (2014).
http://dx.doi.org/10.1016/j.tet.2013.10.085
23.
23.G. R. Chaudhary, P. Bansal, and S. K. Mehta, Chem. Eng. J. 243, 217 (2014).
http://dx.doi.org/10.1016/j.cej.2014.01.012
24.
24.J. Mondal, T. Sen, and A. Bhaumik, Dalton Trans. 41, 6173 (2012).
http://dx.doi.org/10.1039/c2dt30106g
25.
25.Z.-L. Shen, X.-P. Xu, and S.-J. Ji, J. Org. Chem. 75, 1162 (2010).
http://dx.doi.org/10.1021/jo902394y
26.
26.J. Mondal, A. Modak, M. Nandi, H. Uyama, and A. Bhaumik, RSC Adv. 2, 11306 (2012).
http://dx.doi.org/10.1039/c2ra22291d
27.
27.D. Chandra and A. Bhaumik, Ind. Eng. Chem. Res. 45, 4879 (2006).
http://dx.doi.org/10.1021/ie060312w
28.
28.D. Chandra, B. K. Jena, C. R. Raj, and A. Bhaumik, Chem. Mater. 19, 6290 (2007).
http://dx.doi.org/10.1021/cm702259q
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4897553
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4897553
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4897553
2014-10-15
2016-09-25

Abstract

A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N sorption, HR-TEM, and NH temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4897553.html;jsessionid=upPh9l5MChTmIyF_9klF1FZz.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4897553&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4897553&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4897553'
Top,Right1,Right2,Right3,