Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4897964
1.
1.Y. Wang, A. D. Price, and F. Caruso, “Nanoporous colloids: Building blocks for a new generation of structured materials,” J. Mater. Chem. 19, 64516464 (2009).
http://dx.doi.org/10.1039/b901742a
2.
2.S. M. Adams, S. Campione, J. D. Caldwell, F. J Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: Tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8, 22392249 (2012).
http://dx.doi.org/10.1002/smll.201102708
3.
3.W. T. Huck, “Effects of nanoconfinement on the morphology and reactivity of organic materials,” Chem. Commun. 2005, 41434148 .
http://dx.doi.org/10.1039/B502849N
4.
4.N. Najmoddin, A. Beitollahi, E. Devlin, H. Kavas, S. M. Mohseni, J. Åkerman, D. Niarchos, H. Rezaie, M. Muhammed, and M. S. Toprak, “Magnetic properties of crystalline mesoporous Zn-substituted copper ferrite synthesized under nanoconfinement in silica matrix,” Microporous Mesoporous Mater. 190, 346355 (2014).
http://dx.doi.org/10.1016/j.micromeso.2014.02.033
5.
5.D. Carta, M. F. Casula, S. Bullita, A. Falqui, A. Casu, C. M. Carbonaro, and A. Corrias, “Direct sol-gel synthesis of doped cubic mesoporous SBA-16 monoliths,” Microporous Mesoporous Mater. 194, 157166 (2014).
http://dx.doi.org/10.1016/j.micromeso.2014.03.032
6.
6.I. B. Martini, I. M. Craig, W. C. Molenkamp, H. Miyata, S. H. Tolbert, and B. J. Schwartz, “Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment,” Nat. Nanotechnol. 2, 647652 (2007).
http://dx.doi.org/10.1038/nnano.2007.294
7.
7.D. Brühwiler, D. Calzaferri, T. Torres, J. H. Ramm, N. Gartmann, L. Dieu, I. Lopez-Duarte, and V. Martínez-Díaz, “Nanochannels for supramolecular organization of luminescent guests,” J. Mater. Chem. 19, 80408067 (2009).
http://dx.doi.org/10.1039/b907308f
8.
8.X. Jiang, A. Ishizumi, N. Suzuki, M. Naito, and Y. Yamauchi, “Vertically-oriented conjugated polymer arrays in mesoporous alumina via simple drop-casting and appearance of anisotropic photoluminescence,” Chem. Commun. 48, 549551 (2011).
http://dx.doi.org/10.1039/c1cc14502a
9.
9.C. Aprile, A. Abad, H. García, and A. Corma, “Synthesis and catalytic activity of periodic mesoporous materials incorporating gold nanoparticles,” J. Mater. Chem. 15, 44084413 (2005).
http://dx.doi.org/10.1039/b507418e
10.
10.A. Calvo, M. C. Fuertes, B. Yameen, F. J. Williams, O. Azzaroni, and G. Soler-Illia, “Nanochemistry in confined environments: Polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films,” Langmuir 26, 55595567 (2010).
http://dx.doi.org/10.1021/la9038304
11.
11.C. He, Y. Yu, C. Chen, L. Yue, N. Qiao, Q. Shen, J. Chen, and Z. Hao, “Facile preparation of 3D ordered mesoporous CuOx–CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds,” RSC Adv. 3, 1963919656 (2013).
http://dx.doi.org/10.1039/c3ra42566e
12.
12.P. F. Wang, H. X. Jin, M. Chen, D. F. Jin, B. Hong, H. L. Ge, J. Gong, X. L. Peng, H. Yang, Z. Y. Liu, and X. Q. Wang, “Microstructure and magnetic properties of highly ordered SBA-15 nanocomposites modified with and nanoparticles,” J. Nanomater. 2012, 17 (2012).
http://dx.doi.org/10.1155/2012/269861
13.
13.A. F. Gross, M. R. Diehl, K. C. Beverly, E. K. Richman, and S. H. Tolbert, “Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica,” J. Phys. Chem. B 107, 54755482 (2003).
http://dx.doi.org/10.1021/jp034240n
14.
14.H. A. Lin, C. H. Liu, W. C. Huang, Z. C. Liou, M. W. Chu, H. C. Chen, J. F. Lee, and C. M. Yang, “Novel magnetically separable mesoporous Fe2O3 SBA-15 nanocomposite with fully open mesochannels for protein immobilization,” Chem. Mater. 20, 66176622 (2008).
http://dx.doi.org/10.1021/cm800551h
15.
15.X. Wang, M. Chen, L. Li, D. Jin, H. Jin, and H. Ge, “Magnetic properties of SBA-15 mesoporous nanocomposites with CoFe2O4 nanoparticles,” Mater. Lett. 64, 708710 (2010).
http://dx.doi.org/10.1016/j.matlet.2009.12.045
16.
16.D. Weller and A. Moser, “Thermal effect limits in ultrahigh-density magnetic recording,” IEEE Trans. Magn. 35, 44234439 (1999).
http://dx.doi.org/10.1109/20.809134
17.
17.D. Goll and S. Macke, “Thermal stability of ledge-type L1(0)-FePt/Fe exchange-spring nanocomposites for ultrahigh recording densities,” Appl. Phys. Lett. 93, 152512 (2008).
http://dx.doi.org/10.1063/1.3001589
18.
18.N. Weiss, T. Cren, M. Epple, S. Rusponi, G. Baudot, S. Rohart, A. Tejeda, V. Repain, S. Rousset, P. Ohresser, F. Scheurer, P. Bencok, and H. Brune, “Uniform magnetic properties for an ultrahigh-density lattice of noninteracting Co nanostructures,” Phys. Rev. Lett. 95, 157204 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.157204
19.
19.R. P. Cowburn and M. E. Welland, “Room temperature magnetic quantum cellular automata,” Science 287, 14661468 (2000).
http://dx.doi.org/10.1126/science.287.5457.1466
20.
20.K. D. Sorge, A. Kashyap, R. Skomski, L. Yue, L. Gao, R. D. Kirby, S. H. Liou, and D. J. Sellmyer, “Interactions and switching behavior of anisotropic magnetic dots,” J. Appl. Phys. 95, 74147416 (2004).
http://dx.doi.org/10.1063/1.1676053
21.
21.D. L. Leslie-Pelecky and R. D. Rieke, “Magnetic properties of nanostructured materials,” Chem. Mater. 8, 17701783 (1996).
http://dx.doi.org/10.1021/cm960077f
22.
22.W. F. Brown, “Thermal fluctuations of a single-domain particle,” Phys. Rev. 130, 16771686 (1963).
http://dx.doi.org/10.1103/PhysRev.130.1677
23.
23.H. C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, and S. Dey, “Studies on antiferromagnetic/ferromagnetic interfaces,” J. Magn. Magn. Mater. 209, 5660 (2009).
http://dx.doi.org/10.1016/S0304-8853(99)00645-9
24.
24.N. A. Frey, S. Srinath, H. Srikanth, M. Varela, S. Pennycook, G. X. Miao, and A. Gupta, “Magnetic anisotropy in epitaxial CrO2 and CrO2/Cr2O3 bilayer thin films,” Phys. Rev. B 74, 024420 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.024420
25.
25.B. Diouf, L. Gabillet, A. R. Fert, D. Hrabovsky, V. Prochazka, E. Snoeck, and J. F. Bobo, “Anisotropy, exchange bias, dipolar coupling and magnetoresistive response in NiO-Co-Al2O3-Co magnetic tunnel junctions,” J. Magn. Magn. Mater. 265, 204214 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00267-1
26.
26.D. Givord, V. Skumryev, and J. Nogues, “Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix,” J. Magn. Magn. Mater. 294, 111116 (2005).
http://dx.doi.org/10.1016/j.jmmm.2005.03.022
27.
27.X. R. Hu, P. W. Wu, and J. Yuan, “Exchange-coupled Fe3O4/L1(0)-FePt bilayer films by controlled oxidation of Fe/Pt multilayer,” Thin Solid Films 517, 26022605 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.10.040
28.
28.H. Oguchi, A. Zambano, M. Yu, J. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, and I. Takeuchi, “The effect of CoPt crystallinity and grain texturing on properties of exchange-coupled Fe/CoPt systems,” J. Appl. Phys. 105, 023912 (2009).
http://dx.doi.org/10.1063/1.3068330
29.
29.J. Li, Z. L. Wang, H. Zeng, S. H. Sun, and J. P. Liu, “Interface structures in FePt/Fe3Pt hard-soft exchange-coupled magnetic nanocomposites,” Appl. Phys. Lett. 82, 37433745 (2003).
http://dx.doi.org/10.1063/1.1578515
30.
30.H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. H. Sun, “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature 420, 395398 (2002).
http://dx.doi.org/10.1038/nature01208
31.
31.Z. Hao, S. Sun, T. S. Vedantam, J. P. Liu, Z. R. Dai, and Z. L. Wang, “Exchange-coupled FePt nanoparticle assembly,” Appl. Phys. Lett. 80, 25832585 (2002).
http://dx.doi.org/10.1063/1.1467976
32.
32.V. Franco, X. Batlle, A. Labarta, and K. O’Grady, “The nature of magnetic interactions in CoFe-Ag(Cu) granular thin films,” J. Phys. D: Appl. Phys. 33, 609613 (2000).
http://dx.doi.org/10.1088/0022-3727/33/6/304
33.
33.G. Bottoni, D. Candolfo, A. Cecchetti, and F. Masoli, “Interparticle interactions and magnetic parameters of iron powders for magnetic recording,” J. Magn. Magn. Mater. 116, 285290 (1992).
http://dx.doi.org/10.1016/0304-8853(92)90174-M
34.
34.I. S. Jacobs and C. P. Bean, “An approach to elongated fine-particle magnets,” Phys. Rev. 100, 1060 (1955).
http://dx.doi.org/10.1103/PhysRev.100.1060
35.
35.K. Ohshima, “Intergrain necking and the reversal of magnetization of fine, highly acicular ferromagnetic skeleton particles,” J. Mater. Sci. 36, 28152831 (2001).
http://dx.doi.org/10.1023/A:1017937502234
36.
36.X. C. Lu, S. H. Ge, L. X. Jiang, and X. W. Wang, “Chain of ellipsoids approach to the magnetic nanowire,” J. Appl. Phys. 97, 084304 (2005).
http://dx.doi.org/10.1063/1.1882765
37.
37.V. F. Puntes, “Colloidal nanocrystal shape and size control: The case of cobalt,” Science 291, 21152117 (2001).
http://dx.doi.org/10.1126/science.1057553
38.
38.J. Kim, C. Rong, J. P. Liu, and S. Sun, “Dispersible ferromagnetic FePt nanoparticles,” Adv. Mater. 21, 906909 (2009).
http://dx.doi.org/10.1002/adma.200801620
39.
39.X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437, 121124 (2005).
http://dx.doi.org/10.1038/nature03968
40.
40.C. Wang, R. T. Lv, F. Y. Kang, J. L. Gu, X. C. Gui, and D. H. Wu, “Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles,” J. Magn. Magn. Mater. 321, 19241927 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.12.013
41.
41.N. R. Jana, Y. Chen, and X. Peng, “Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach,” Chem. Mater. 16, 39313935 (2004).
http://dx.doi.org/10.1021/cm049221k
42.
42.M. Gu, B. Yue, R. Bao, and H. He, “Template synthesis of magnetic one-dimensional nanostructured spinel MFe2O4 (M = Ni, Mg, Co),” Mater. Res. Bull. 44, 14221427 (2009).
http://dx.doi.org/10.1016/j.materresbull.2008.11.018
43.
43.S. Sun, “Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles,” Adv. Mater. 18, 393403 (2006).
http://dx.doi.org/10.1002/adma.200501464
44.
44.L. E. M. Howard, H. L. Nguyen, S. R. Giblin, B. K. Tanner, I. Terry, A. K. Hughes, and J. S. O. Evans, “A synthetic route to size-controlled fcc and fct FePt nanoparticles,” J. Am. Chem. Soc. 127, 1014010141 (2005).
http://dx.doi.org/10.1021/ja051669e
45.
45.M. P. Pileni, “Self-assembly of inorganic nanocrystals in 3D supra crystals: Intrinsic properties,” Surf. Sci. 603, 14981505 (2009).
http://dx.doi.org/10.1016/j.susc.2008.09.068
46.
46.N. Sharma, G. H. Jaffari, S. I. Shah, and D. J. Pochan, “Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning,” Nanotechnology 21, 085707 (2010).
http://dx.doi.org/10.1088/0957-4484/21/8/085707
47.
47.V. F. Puntes and K. M. Krishnan, “Synthesis, structural order and magnetic behavior of self-assembled epsilon-Co nanocrystal arrays,” IEEE Trans. Magn. 37, 22102212 (2001).
http://dx.doi.org/10.1109/20.951126
48.
48.A. Wei, S. L. Tripp, J. Liu, T. Kasama, and R. E. Dunin-Borkowski, “Calixarene-stabilised cobalt nanoparticle rings: Self-assembly and collective magnetic properties,” Supramol. Chem. 21, 189195 (2009).
http://dx.doi.org/10.1080/10610270802546044
49.
49.K. Xu, L. Qin, and J. R. Heath, “The crossover from two dimensions to one dimension in granular electronic materials,” Nat. Nanotechnol. 4, 368372 (2009).
http://dx.doi.org/10.1038/nnano.2009.81
50.
50.Z. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: Preparation, properties, and promise,” Adv. Mater. 17, 951962 (2005).
http://dx.doi.org/10.1002/adma.200401593
51.
51.F. X. Redl, K. S. Cho, C. B. Murray, and S. O’Brien, “Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots,” Nature 423, 968971 (2003).
http://dx.doi.org/10.1038/nature01702
52.
52.M. P. Pileni, “Nanocrystal self-assemblies: Fabrication and collective properties,” J. Phys. Chem. B 105, 33583371 (2001).
http://dx.doi.org/10.1021/jp0039520
53.
53.L. T. Schelhas, R. A. Farrell, U. Halim, and S. H. Tolbert, “Directed self-assembly as a route to ferromagnetic and superparamagnetic nanoparticle arrays,” Adv. Func. Mater. (in press).
54.
54.D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science 279, 548552 (1998).
http://dx.doi.org/10.1126/science.279.5350.548
55.
55.G. S. Attard, J. C. Glyde, and C. G. Goltner, “Liquid-crystalline phases as templates for the synthesis of mesoporous silica,” Nature 378, 366368 (1995).
http://dx.doi.org/10.1038/378366a0
56.
56.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” J. Am. Chem. Soc. 114, 1083410843 (1992).
http://dx.doi.org/10.1021/ja00053a020
57.
57.Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, and G. D. Stucky, “Generalized synthesis of periodic surfactant inorganic composite-materials,” Nature 368, 317321 (1994).
http://dx.doi.org/10.1038/368317a0
58.
58.Z. L. Yang, Y. F. Lu, and Z. Z. Yang, “Mesoporous materials: Tunable structure, morphology and composition,” Chem. Commun. 2009, 22702277 .
http://dx.doi.org/10.1039/b820539f
59.
59.L. Cao, T. Man, and M. Kruk, “Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander,” Chem. Mater. 21, 11441153 (2009).
http://dx.doi.org/10.1021/cm8012733
60.
60.M. Kruk, M. Jaroniec, C. H. Ko, and R. Ryoo, “Characterization of the porous structure of SBA-15,” Chem. Mater. 12, 19611968 (2000).
http://dx.doi.org/10.1021/cm000164e
61.
61.D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures,” J. Am. Chem. Soc. 120, 60246036 (1998).
http://dx.doi.org/10.1021/ja974025i
62.
62.S. Angloher and T. Bein, “Organic functionalisation of mesoporous silica,” Stud. Surf. Sci. Catal. 158, 20172026 (2005).
63.
63.Y. H. Liu, H. P. Lin, and C. Y. Mou, “Direct method for surface silyl functionalization of mesoporous silica,” Langmuir 20, 32313239 (2004).
http://dx.doi.org/10.1021/la0358421
64.
64.F. De Juan and E. Ruiz-Hitzky, “Selective functionalization of mesoporous silica,” Adv. Mater. 12, 430432 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200003)12:6<430::AID-ADMA430>3.0.CO;2-3
65.
65.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature 359, 710712 (1992).
http://dx.doi.org/10.1038/359710a0
66.
66.E. Kockrick, P. Krawiec, W. Schnelle, D. Geiger, F. M. Schappacher, R. Pöttgen, and S. Kaskel, “Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15,” Adv. Mater. 19, 30213026 (2007).
http://dx.doi.org/10.1002/adma.200601367
67.
67.L. Zhang, G. C. Papaefthymiou, and J. Y. Ying, “Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices,” J. Phys. Chem. B 105, 74147423 (2001).
http://dx.doi.org/10.1021/jp010174i
68.
68.M. Froba, R. Kohn, G. Bouffaud, O. Richard, and G. Van Tendeloo, “Fe2O3 nanoparticles within mesoporous MCM-48 silica: In situ formation and characterization,” Chem. Mater. 11, 28582865 (1999).
http://dx.doi.org/10.1021/cm991048i
69.
69.R. Köhn and M. Fröba, “Nanoparticles of 3d transition metal oxides in mesoporous MCM-48 silica host structures: Synthesis and characterization,” Catal. Today 68, 227236 (2001).
http://dx.doi.org/10.1016/S0920-5861(01)00282-6
70.
70.See supplementary material at http://dx.doi.org/10.1063/1.4897964 for fully synthetic details, X-ray powder diffraction data on the mesoporous silica host, and on fcc and fct FePt nanocrystals, fully details on instrumentation used in this work and the 10 K and 298 K hysteresis curves used to determine these coercivity values.[Supplementary Material]
71.
71.M. Chen, J. P. Liu, and S. H. Sun, “One-step synthesis of FePt nanoparticles with tunable size,” J. Am. Chem. Soc. 126, 83948395 (2004).
http://dx.doi.org/10.1021/ja047648m
72.
72.C. Kittel, “Theory of the structure of ferromagnetic domains in films and small particles,” Phys. Rev. 70, 965971 (1946).
http://dx.doi.org/10.1103/PhysRev.70.965
73.
73.L. Néel, “Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres,” Ann. Geophys. 5, 99136 (1949).
74.
74.H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, and D. J. Sellmyer, “Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays,” Phys. Rev. B 65, 134426 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134426
75.
75.L. Sun, Y. Hao, C. L. Chien, and P. C. Searson, “Tuning the properties of magnetic nanowires,” IBM J. Res. Dev. 49, 79102 (2005).
http://dx.doi.org/10.1147/rd.491.0079
76.
76.Z. H. Cheng, J. H. Gao, Q. F. Zhan, H. Wei, and D. L. Sun, “Thermally activated magnetization reversal process of self-assembled Fe55Co45 nanowire arrays,” J. Magn. Magn. Mater. 305, 365371 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.01.028
77.
77.T. Fried, G. Shemer, and G. Markovich, “Ordered two-dimensional arrays of ferrite nanoparticles,” Adv. Mater. 13, 11581161 (2001).
http://dx.doi.org/10.1002/1521-4095(200108)13:15<1158::AID-ADMA1158>3.0.CO;2-6
78.
78.P. Poddar, T. Telem-Shafir, T. Fried, and G. Markovich, “Dipolar interactions in two- and three-dimensional magnetic nanoparticle arrays,” Phys. Rev. B 66, 060403 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.060403
79.
79.P. Y. Keng, I. Shim, B. D. Korth, J. F. Douglas, and J. Pyun, “Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles,” ACS Nano 1, 279292 (2007).
http://dx.doi.org/10.1021/nn7001213
80.
80.N. A. Spaldin, “Anisotropy,” in Magnetic Materials: Fundamentals and Device Applications (Cambridge University Press, 2003), Chap. 10, pp. 123131.
81.
81.W. Wernsdorfer, E. B. Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, and D. Mailly, “Experimental evidence of the Néel-Brown model of magnetization reversal,” Phys. Rev. Lett. 78, 1791 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1791
82.
82.J. J. Benkoski, J. L. Breidenich, O. M. Uy, A. T. Hayes, R. M. Deacon, H. B. Land, J. M. Spicer, P. Y. Keng, and J. Pyun, “Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies,” J. Mater. Chem. 21, 73147325 (2011).
http://dx.doi.org/10.1039/c0jm04014b
83.
83.B. Kim, I. Shim, R. Sahoo, Z. Oskan, S. S. Saavedra, N. R. Armstrong, and J. Pyun, “Synthesis and colloidal polymerization of dipolar Au-Co core-shell nanoparticles into Au-Co3O4 nanowires,” J. Am. Chem. Soc. 132, 32343235 (2010).
http://dx.doi.org/10.1021/ja908481z
84.
84.E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray, “Structural diversity in binary nanoparticle superlattices,” Nature 439, 5559 (2006).
http://dx.doi.org/10.1038/nature04414
85.
85.D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. V. Titov, and P. Král, “Dipole-dipole interactions in nanoparticle superlattices,” Nano Lett. 7, 12131219 (2007).
http://dx.doi.org/10.1021/nl070058c
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4897964
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4897964
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4897964
2014-10-24
2016-09-26

Abstract

Mesoporous materials provide a unique host for controlling interactions between nanoscale guests. Here, we use polymer-templated mesoporous silicas to control magnetic dipole-dipole coupling between soft (superparamagnetic) face-centered-cubic and hard (ferromagnetic) face-centered-tetragonal FePt nanocrystals. We find that mixed soft-hard coupled FePt chains show enhanced magnetic coercivity, compared to single-component chains, while randomly associated nanocrystals show no change. A semi-quantitative analysis of temperature dependent magnetization data indicates that the free-energy barrier to spin flipping has both significant enthalpic and entropic components. Linear channels, thus, appear to be an effective way to organize magnetic nanocrystals with constructive dipolar coupling and tunable magnetic properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4897964.html;jsessionid=3p54SETVnLSoN1SVxBBup8EJ.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4897964&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4897964&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4897964'
Top,Right1,Right2,Right3,