Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Serp and E. Castillejos, ChemCatChem 2, 4147 (2010).
2.S. H. Shuit, K. F. Yee, K. T. Lee, B. Subhash, and S. H. Tan, RSC Adv. 3, 90709094 (2013).
3.J. H. Jung, M. Park, and S. Shinkai, Chem. Soc. Rev. 39, 42864302 (2010).
4.S. Lei, J. Zhang, J. R. Wang, and J. B. Huang, Langmuir 26, 42884295 (2010).
5.S. L. Ding, N. Liu, X. W. Li, L. M. Peng, X. F. Guo, and W. P. Ding, Langmuir 26, 45724575 (2010).
6.Y. Li, X.-Y. Yang, Y. Feng, Z.-Y. Yuan, and B.-L. Su, Crit. Rev. Solid State Mater. Sci. 37, 174 (2012).
7.W. Chen, Z. L. Fan, X. L. Pan, and X. H. Bao, J. Am. Chem. Soc. 130, 94149419 (2008).
8.T. Kamegawa, D. Yamahana, H. Seito, and H. Yamashita, J. Mater. Chem. A 1, 891897 (2013).
9.X. Liu, X. B. Li, Z. Guan, J. Liu, J. Zhao, Y. Yang, and Q. H. Yang, Chem. Commun. 47, 80738075 (2011).
10.M. Mandal and M. Kruk, Chem. Mater. 24, 123132 (2012).
11.D. A. Nicewicz and D. W. C. MacMillan, Science 322, 7780 (2008).
12.Q. S. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, and C. L. Hill, Science 328, 342345 (2010).
13.J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, and T. J. Meyer, Acc. Chem. Res. 42, 19541965 (2009).
14.C. D. Nunes, A. A. Valente, M. Pillinger, A. C. Fernandes, C. C. Romão, J. Rocha, and I. S. Gonçalves, J. Mater. Chem. 12, 17351742 (2002).
15.J. V. Nguyen and C. W. Jones, Macromolecules 37, 11901203 (2004).
16.M. Waki, Y. Maegawa, K. Hara, Y. Goto, S. Shirai, Y. Yamada, N. Mizoshita, T. Tani, W. J. Chun, S. Muratsugu, M. Tada, A. Fukuoka, and S. Inagaki, J. Am. Chem. Soc. 136, 40034011 (2014).
17.W. R. Grüning, G. Siddiqi, O. V. Safonova, and C. Copéret, Adv. Synth. Catal. 356, 673679 (2014).
18.E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, and O. M. Yaghi, J. Am. Chem. Soc. 132, 1438214384 (2010).
19.C. Wang, Z. G. Xie, K. E. deKrafft, and W. B. Lin, J. Am. Chem. Soc. 133, 1344513454 (2011).
20.C. Wang, J.-L. Wang, and W. B. Lin, J. Am. Chem. Soc. 134, 1989519908 (2012).
21.K. Manna, T. Zhang, and W. B. Lin, J. Am. Chem. Soc. 136, 65666569 (2014).
22.S. P. Wu, R. Y. Huang, and K. J. Du, Dalton Trans. 24, 47354740 (2009).
23.K. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger III, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, and G. W. Brudvig, Coord. Chem. Rev. 256, 25032520 (2012).
24.J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, and R. H. Crabtree, J. Am. Chem. Soc. 131, 87308731 (2009).
25.J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, and R. H. Crabtree, J. Am. Chem. Soc. 132, 1601716029 (2010).

Data & Media loading...


Article metrics loading...



We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd