Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4899117
1.
1.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 3738 (1972).
http://dx.doi.org/10.1038/238037a0
2.
2.K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, and O. Šolcová, “Effect of TiO2 particle size on the photocatalytic reduction of CO2,” Appl. Catal., B 89, 494502 (2009).
http://dx.doi.org/10.1016/j.apcatb.2009.01.010
3.
3.M. R. Hoffmann, S. M. Martin, W. Choi, and D. W. Bahneman, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95, 6996 (1995).
http://dx.doi.org/10.1021/cr00033a004
4.
4.M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol,” J. Phys. Chem. B 106, 1067410679 (2002).
http://dx.doi.org/10.1021/jp025715y
5.
5.B. Ohtani, Y. Ogawa, and S.-I. Nishimoto, “Photocatalytic activity of amorphous–anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions,” J. Phys. Chem. B 101, 37463752 (1997).
http://dx.doi.org/10.1021/jp962702+
6.
6.A. D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, and L. Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions,” Colloids Surf., A 317, 366376 (2008).
http://dx.doi.org/10.1016/j.colsurfa.2007.11.005
7.
7.B. Ohtani, J.-I. Handa, S.-I. Nishimoto, and T. Kagiya, “Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution,” Chem. Phys. Lett. 120, 292294 (1985).
http://dx.doi.org/10.1016/0009-2614(85)87060-3
8.
8.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature 359, 710712 (1992).
http://dx.doi.org/10.1038/359710a0
9.
9.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenkert, “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” J. Am. Chem. Soc. 114, 1083410843 (1992).
http://dx.doi.org/10.1021/ja00053a020
10.
10.D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science 279, 548552 (1998).
http://dx.doi.org/10.1126/science.279.5350.548
11.
11.M. Rawolle, M. A. Ruderer, S. M. Prams, Q. Zhong, D. Magerl, J. Perlich, S. V. Roth, P. Lellig, J. S. Gutmann, and P. Müller-Buschbaum, “Nanostructuring of titania thin films by a combination of microfluidics and block-copolymer-based sol–gel templating,” Small 7, 884891 (2011).
http://dx.doi.org/10.1002/smll.201001734
12.
12.M. Rawolle, M. A. Niedermeier, G. Kaune, J. Perlich, P. Lellig, M. Memesa, Y.-J. Cheng, J. S. Gutmann, and P. Müller-Buschbaum, “Fabrication and characterization of nanostructured titania films with integrated function from inorganic–organic hybrid materials,” Chem. Soc. Rev. 41, 51315142 (2012).
http://dx.doi.org/10.1039/c2cs15321a
13.
13.P. Feng, X. Bu, and D. J. Pine, “Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems,” Langmuir 16, 53045310 (2000).
http://dx.doi.org/10.1021/la991444f
14.
14.T. Kimura, S. Saeki, Y. Sugahara, and K. Kuroda, “Organic modification of FSM-type mesoporous silicas derived from kanemite by silylation,” Langmuir 15, 27942798 (1999).
http://dx.doi.org/10.1021/la9815042
15.
15.D. M. Antonelli and J. Y. Ying, “Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method,” Angew. Chem., Int. Ed. Engl. 34, 20142017 (1995).
http://dx.doi.org/10.1002/anie.199520141
16.
16.P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 32843294 (2002).
http://dx.doi.org/10.1021/cm011209u
17.
17.S.-Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc- TiO2: Bulk and crack-free thin film morphologies,” Adv. Funct. Mater. 14, 335343 (2004).
http://dx.doi.org/10.1002/adfm.200305039
18.
18.Y. Denkwitz, M. Makosch, J. Geserick, U. Hörmann, S. Selve, U. Kaiser, N. Hüsing, and R. J. Behm, “Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/ TiO2 catalysts,” Appl. Catal., B 91, 470480 (2009).
http://dx.doi.org/10.1016/j.apcatb.2009.06.016
19.
19.P. Kubiak, T. Fröschl, N. Hüsing, U. Hörmann, U. Kaiser, R. Schiller, C. K. Weiss, K. Landfester, and M. Wohlfahrt-Mehrens, “TiO2 anatase nanoparticle networks: Synthesis, structure, and electrochemical performance,” Small 7, 16901696 (2011).
http://dx.doi.org/10.1002/smll.201001943
20.
20.M. Rawolle, E. V. Braden, M. A. Niedermeier, D. Magerl, K. Sarkar, T. Fröschl, N. Hüsing, J. Perlich, and P. Müller-Buschbaum, “Low-temperature route to crystalline titania network structures in thin films,” ChemPhysChem 13, 24122417 (2012).
http://dx.doi.org/10.1002/cphc.201200056
21.
21.P. Hartmann, D.-K. Lee, B. M. Smarsly, and J. Janek, “Mesoporous TiO2: Comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction,” ACS Nano 4, 31473154 (2010).
http://dx.doi.org/10.1021/nn1004765
22.
22.J. M. Szeifert, J. M. Feckl, D. Fattakhova-Rohlfing, Y. Liu, V. Kalousek, J. Rathousky, and T. Bein, “Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion,” J. Am. Chem. Soc. 132, 1260512611 (2010).
http://dx.doi.org/10.1021/ja101810e
23.
23.E. Nilsson, Y. Sakamoto, and A. E. C. Palmqvist, “Low-temperature synthesis and HRTEM analysis of ordered mesoporous anatase with tunable crystallite size and pore shape,” Chem. Mater. 23, 27812785 (2011).
http://dx.doi.org/10.1021/cm103600q
24.
24.C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater. 11, 579585 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
25.
25.B. Elgh, N. Yuan, H. S. Cho, E. Nilsson, O. Terasaki, and A. E. C. Palmqvist, “Correlating photocatalytic performance with microstructure of mesoporous titania influenced by employed synthesis conditions,” J. Phys. Chem. C 117, 16492 (2013).
http://dx.doi.org/10.1021/jp405511n
26.
26.B. Elgh and A. E. C. Palmqvist, “Controlling anatase and rutile polymorph selectivity during low-temperature synthesis of mesoporous TiO2 films,” J. Mater. Chem. A 2, 3024 (2014).
http://dx.doi.org/10.1039/c3ta12930f
27.
27.R. Su, R. Bechstein, L. , R. T. Vang, M. Sillassen, B. Esbjörnsson, A. Palmqvist, and F. Besenbacher, “How the anatase-to-rutile ratio influences the photoreactivity of TiO2,” J. Phys. Chem. C 115, 24287 (2011).
http://dx.doi.org/10.1021/jp2086768
28.
28.M. Andersson, H. Birkedal, N. R. Franklin, T. Ostomel, S. Boettcher, A. E. C. Palmqvist, and G. D. Stucky, “Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis,” Chem. Mater. 17, 1409 (2005).
http://dx.doi.org/10.1021/cm0485761
29.
29.Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, G. J. de A. A. Soler-Illia, and C. Sanchez, “Optimised photocatalytic activity of grid-like mesoporous TiO2 films: Effect of crystallinity, pore size distribution, and pore accessibility,” J. Mater. Chem. 16, 77 (2006).
http://dx.doi.org/10.1039/b512824m
30.
30.J. C. Yu, X. Wang, and X. Fu, “Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films,” Chem. Mater. 16, 1523 (2004).
http://dx.doi.org/10.1021/cm049955x
31.
31.M. A. Carreon, S. Y. Choi, M. Mamak, N. Chopra, and G. A. Ozin, “Pore architecture affects photocatalytic activity of periodic mesoporous nanocrystalline anatase thin films,” J. Mater. Chem. 17, 82 (2007).
http://dx.doi.org/10.1039/b612550f
32.
32.H. J. Pan, S. Y. Chae, and W. I. Lee, Mater. Sci. Forum 58, 510511 (2006).
http://dx.doi.org/10.4028/www.scientific.net/MSF.510-511.58
33.
33.E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 97709786 (2003).
http://dx.doi.org/10.1021/ja030070g
34.
34.P. Müller-Buschbaum, “Grazing incidence small-angle X-ray scattering: An advanced scattering technique for the investigation of nanostructured polymer films,” Anal. Bioanal. Chem. 376, 310 (2003).
http://dx.doi.org/10.1007/s00216-003-1869-2
35.
35.A. Buffet, A. Rothkirch, R. Doehrmann, V. Körstgens, M. M. A. Kashem, J. Perlich, G. Herzog, M. Schwartzkopf, R. Gehrke, P. Müller-Buschbaum, and S. V. Roth, “P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: The microfocus endstation,” J. Synchrotron Radiat. 19, 647653 (2012).
http://dx.doi.org/10.1107/S0909049512016895
36.
36.Y. Yoneda, “Anomalous surface reflection of X rays,” Phys. Rev. 131, 2010 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2010
37.
37.P. Müller-Buschbaum, E. Bauer, O. Wunnicke, and M. Stamm, “The control of thin film morphology by the interplay of dewetting, phase separation and microphase separation,” J. Phys.: Condens. Matter 17, S363 (2005).
http://dx.doi.org/10.1088/0953-8984/17/9/006
38.
38.P. Holmqvist, P. Alexandridis, and B. Lindman, “Modification of the microstructure in block copolymer–water–“oil” systems by varying the copolymer composition and the “oil” type:Small-angle X-ray scattering and deuterium-NMR investigation,” J. Phys. Chem. B 102, 11491158 (1998).
http://dx.doi.org/10.1021/jp9730297
39.
39.J. Livage, M. Henry, and C. Sanchez, “Sol-gel chemistry of transition metal oxides,” Prog. Solid State Chem. 18, 259 (1988).
http://dx.doi.org/10.1016/0079-6786(88)90005-2
40.
40.R. Hosemann, W. Vogel, and D. Weick, “Novel aspects of the real paracrystal,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 37, 8591 (1981).
http://dx.doi.org/10.1107/S0567739481000156
41.
41.R. Lazzari, “IsGISAXS: A program for grazing-incidence small-angle X-ray scattering analysis of supported islands,” J. Appl. Crystallogr. 35, 406421 (2002).
http://dx.doi.org/10.1107/S0021889802006088
42.
42.E. Nilsson, H. Furusho, O. Terasaki, and A. E. C. Palmqvist, “Synthesis of nanoparticulate anatase and rutile crystallites at low temperatures in the Pluronic F127 microemulsion system,” J. Mater. Res. 26, 288295 (2011).
http://dx.doi.org/10.1557/jmr.2010.5
43.
43.B. B. Zermeno, E. Moctezuma, and R. Garcia-Alamilla, “Photocatalytic degradation of phenol and 4-chlorophenol with titania, oxygen and ozone,” Sustainable Environ. Res. 21, 299305 (2011).
44.
44.A. M. Peiró, J. A. Ayllón, J. Peral, and X. Doménech, “TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds,” Appl. Catal., B 30, 359373 (2001).
http://dx.doi.org/10.1016/S0926-3373(00)00248-4
45.
45.T. Alapi and A. Dombi, “Comparative study of the UV and UV/VUV-induced photolysis of phenol in aqueous solution,” J. Photochem. Photobiol., A 188, 409418 (2007).
http://dx.doi.org/10.1016/j.jphotochem.2007.01.002
46.
46.W. Xu, P. K. Jain, B. J. Beberwyck, and A. P. Alivisatos, “Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces,” J. Am. Chem. Soc. 134, 39463949 (2012).
http://dx.doi.org/10.1021/ja210010k
47.
47.C. G. Silva and J. L. Faria, “Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol–gel TiO2 under UV irradiation,” J. Mol. Catal. A: Chem. 305, 147154 (2009).
http://dx.doi.org/10.1016/j.molcata.2008.12.015
48.
48.C.-H. Chiou, C.-Y. Wu, and R.-S. Juang, “Influence of operating parameters on photocatalytic degradation of phenol in UV/ TiO2 process,” Chem. Eng. J. 139, 322329 (2008).
http://dx.doi.org/10.1016/j.cej.2007.08.002
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4899117
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4899117
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4899117
2014-10-27
2016-09-30

Abstract

Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4899117.html;jsessionid=QZ1LifsHJPtCYjoujXOij4oN.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4899117&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4899117&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4899117'
Top,Right1,Right2,Right3,