Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 3738 (1972).
2.K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, and O. Šolcová, “Effect of TiO2 particle size on the photocatalytic reduction of CO2,” Appl. Catal., B 89, 494502 (2009).
3.M. R. Hoffmann, S. M. Martin, W. Choi, and D. W. Bahneman, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95, 6996 (1995).
4.M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol,” J. Phys. Chem. B 106, 1067410679 (2002).
5.B. Ohtani, Y. Ogawa, and S.-I. Nishimoto, “Photocatalytic activity of amorphous–anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions,” J. Phys. Chem. B 101, 37463752 (1997).
6.A. D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, and L. Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions,” Colloids Surf., A 317, 366376 (2008).
7.B. Ohtani, J.-I. Handa, S.-I. Nishimoto, and T. Kagiya, “Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution,” Chem. Phys. Lett. 120, 292294 (1985).
8.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature 359, 710712 (1992).
9.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenkert, “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” J. Am. Chem. Soc. 114, 1083410843 (1992).
10.D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science 279, 548552 (1998).
11.M. Rawolle, M. A. Ruderer, S. M. Prams, Q. Zhong, D. Magerl, J. Perlich, S. V. Roth, P. Lellig, J. S. Gutmann, and P. Müller-Buschbaum, “Nanostructuring of titania thin films by a combination of microfluidics and block-copolymer-based sol–gel templating,” Small 7, 884891 (2011).
12.M. Rawolle, M. A. Niedermeier, G. Kaune, J. Perlich, P. Lellig, M. Memesa, Y.-J. Cheng, J. S. Gutmann, and P. Müller-Buschbaum, “Fabrication and characterization of nanostructured titania films with integrated function from inorganic–organic hybrid materials,” Chem. Soc. Rev. 41, 51315142 (2012).
13.P. Feng, X. Bu, and D. J. Pine, “Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems,” Langmuir 16, 53045310 (2000).
14.T. Kimura, S. Saeki, Y. Sugahara, and K. Kuroda, “Organic modification of FSM-type mesoporous silicas derived from kanemite by silylation,” Langmuir 15, 27942798 (1999).
15.D. M. Antonelli and J. Y. Ying, “Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method,” Angew. Chem., Int. Ed. Engl. 34, 20142017 (1995).
16.P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 32843294 (2002).
17.S.-Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc- TiO2: Bulk and crack-free thin film morphologies,” Adv. Funct. Mater. 14, 335343 (2004).
18.Y. Denkwitz, M. Makosch, J. Geserick, U. Hörmann, S. Selve, U. Kaiser, N. Hüsing, and R. J. Behm, “Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/ TiO2 catalysts,” Appl. Catal., B 91, 470480 (2009).
19.P. Kubiak, T. Fröschl, N. Hüsing, U. Hörmann, U. Kaiser, R. Schiller, C. K. Weiss, K. Landfester, and M. Wohlfahrt-Mehrens, “TiO2 anatase nanoparticle networks: Synthesis, structure, and electrochemical performance,” Small 7, 16901696 (2011).
20.M. Rawolle, E. V. Braden, M. A. Niedermeier, D. Magerl, K. Sarkar, T. Fröschl, N. Hüsing, J. Perlich, and P. Müller-Buschbaum, “Low-temperature route to crystalline titania network structures in thin films,” ChemPhysChem 13, 24122417 (2012).
21.P. Hartmann, D.-K. Lee, B. M. Smarsly, and J. Janek, “Mesoporous TiO2: Comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction,” ACS Nano 4, 31473154 (2010).
22.J. M. Szeifert, J. M. Feckl, D. Fattakhova-Rohlfing, Y. Liu, V. Kalousek, J. Rathousky, and T. Bein, “Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion,” J. Am. Chem. Soc. 132, 1260512611 (2010).
23.E. Nilsson, Y. Sakamoto, and A. E. C. Palmqvist, “Low-temperature synthesis and HRTEM analysis of ordered mesoporous anatase with tunable crystallite size and pore shape,” Chem. Mater. 23, 27812785 (2011).
24.C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater. 11, 579585 (1999).<579::AID-ADMA579>3.0.CO;2-R
25.B. Elgh, N. Yuan, H. S. Cho, E. Nilsson, O. Terasaki, and A. E. C. Palmqvist, “Correlating photocatalytic performance with microstructure of mesoporous titania influenced by employed synthesis conditions,” J. Phys. Chem. C 117, 16492 (2013).
26.B. Elgh and A. E. C. Palmqvist, “Controlling anatase and rutile polymorph selectivity during low-temperature synthesis of mesoporous TiO2 films,” J. Mater. Chem. A 2, 3024 (2014).
27.R. Su, R. Bechstein, L. , R. T. Vang, M. Sillassen, B. Esbjörnsson, A. Palmqvist, and F. Besenbacher, “How the anatase-to-rutile ratio influences the photoreactivity of TiO2,” J. Phys. Chem. C 115, 24287 (2011).
28.M. Andersson, H. Birkedal, N. R. Franklin, T. Ostomel, S. Boettcher, A. E. C. Palmqvist, and G. D. Stucky, “Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis,” Chem. Mater. 17, 1409 (2005).
29.Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, G. J. de A. A. Soler-Illia, and C. Sanchez, “Optimised photocatalytic activity of grid-like mesoporous TiO2 films: Effect of crystallinity, pore size distribution, and pore accessibility,” J. Mater. Chem. 16, 77 (2006).
30.J. C. Yu, X. Wang, and X. Fu, “Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films,” Chem. Mater. 16, 1523 (2004).
31.M. A. Carreon, S. Y. Choi, M. Mamak, N. Chopra, and G. A. Ozin, “Pore architecture affects photocatalytic activity of periodic mesoporous nanocrystalline anatase thin films,” J. Mater. Chem. 17, 82 (2007).
32.H. J. Pan, S. Y. Chae, and W. I. Lee, Mater. Sci. Forum 58, 510511 (2006).
33.E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 97709786 (2003).
34.P. Müller-Buschbaum, “Grazing incidence small-angle X-ray scattering: An advanced scattering technique for the investigation of nanostructured polymer films,” Anal. Bioanal. Chem. 376, 310 (2003).
35.A. Buffet, A. Rothkirch, R. Doehrmann, V. Körstgens, M. M. A. Kashem, J. Perlich, G. Herzog, M. Schwartzkopf, R. Gehrke, P. Müller-Buschbaum, and S. V. Roth, “P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: The microfocus endstation,” J. Synchrotron Radiat. 19, 647653 (2012).
36.Y. Yoneda, “Anomalous surface reflection of X rays,” Phys. Rev. 131, 2010 (1963).
37.P. Müller-Buschbaum, E. Bauer, O. Wunnicke, and M. Stamm, “The control of thin film morphology by the interplay of dewetting, phase separation and microphase separation,” J. Phys.: Condens. Matter 17, S363 (2005).
38.P. Holmqvist, P. Alexandridis, and B. Lindman, “Modification of the microstructure in block copolymer–water–“oil” systems by varying the copolymer composition and the “oil” type:Small-angle X-ray scattering and deuterium-NMR investigation,” J. Phys. Chem. B 102, 11491158 (1998).
39.J. Livage, M. Henry, and C. Sanchez, “Sol-gel chemistry of transition metal oxides,” Prog. Solid State Chem. 18, 259 (1988).
40.R. Hosemann, W. Vogel, and D. Weick, “Novel aspects of the real paracrystal,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 37, 8591 (1981).
41.R. Lazzari, “IsGISAXS: A program for grazing-incidence small-angle X-ray scattering analysis of supported islands,” J. Appl. Crystallogr. 35, 406421 (2002).
42.E. Nilsson, H. Furusho, O. Terasaki, and A. E. C. Palmqvist, “Synthesis of nanoparticulate anatase and rutile crystallites at low temperatures in the Pluronic F127 microemulsion system,” J. Mater. Res. 26, 288295 (2011).
43.B. B. Zermeno, E. Moctezuma, and R. Garcia-Alamilla, “Photocatalytic degradation of phenol and 4-chlorophenol with titania, oxygen and ozone,” Sustainable Environ. Res. 21, 299305 (2011).
44.A. M. Peiró, J. A. Ayllón, J. Peral, and X. Doménech, “TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds,” Appl. Catal., B 30, 359373 (2001).
45.T. Alapi and A. Dombi, “Comparative study of the UV and UV/VUV-induced photolysis of phenol in aqueous solution,” J. Photochem. Photobiol., A 188, 409418 (2007).
46.W. Xu, P. K. Jain, B. J. Beberwyck, and A. P. Alivisatos, “Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces,” J. Am. Chem. Soc. 134, 39463949 (2012).
47.C. G. Silva and J. L. Faria, “Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol–gel TiO2 under UV irradiation,” J. Mol. Catal. A: Chem. 305, 147154 (2009).
48.C.-H. Chiou, C.-Y. Wu, and R.-S. Juang, “Influence of operating parameters on photocatalytic degradation of phenol in UV/ TiO2 process,” Chem. Eng. J. 139, 322329 (2008).

Data & Media loading...


Article metrics loading...



Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd