Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Andrieux, J. Nicolas, L. Moine, and G. Barratt, Polymeric Nanoparticles for Drug Delivery (CRC Press, 2013), Vol. 2, p. 123.
2.G. Gellerman and M. A. Firer, Targeted Drug Delivery in Cancer Therapeutics (Transworld Research Network, Kerala, 2010), Vol. 185.
3.R. Padmavathy and M. Hariharan, Res. J. BioTechnol. 3, 117 (2008).
4.F. N. Ludwig, S. D. Pacetti, S. F. A. Hossainy, and D. Davalian, “Nanoshells comprising self-assembled material for drug delivery,” U.S. patent 20070292495A1 (20 December 2007).
5.A. Gabizon, Ann. Biol. Clin. 51, 811 (1993).
6.A. A. Gabizon, Drug Targeting 46, 535 (2002).
7.J. Akimoto, M. Nakayama, and T. Okano, J. Controlled Release 193, 28 (2014).
8.S. Krishnamurthy, V. W. L. Ng, S. Gao, M.-H. Tan, and Y. Y. Yang, Biomaterials 35, 91779186 (2014).
9.J. Feng, R. Zhang, Y. Qu, P. Geng, and S. Qi, Adv. Mater. Res. 753-755, 988994 (2013).
10.B. Sivakumar, R. G. Aswathy, R. Sreejith, Y. Nagaoka, S. Iwai, M. Suzuki, T. Fukuda, T. Hasumura, Y. Yoshida, T. Maekawa, and D. N. Sakthikumar, J. Biomed. Nanotechnol. 10, 885 (2014).
11.D. Zhang, C. Yuan, and H. Zhang, “Composite magnetic nanoparticle for targeting therapy for liver cancer and its preparation method,” CN103611168A (2014).
12.J. Jung, S.-J. Park, H. K. Chung, H.-W. Kang, S.-W. Lee, M. H. Seo, H. J. Park, S. Y. Song, S.-Y. Jeong, and E. K. Choi, Int. J. Radiat. Oncol., Biol., Phys. 84, e77e83 (2012).
13.A. Z. Wang, K. Yuet, L. Zhang, F. X. Gu, M. Huynh-Le, A. F. Radovic-Moreno, P. W. Kantoff, N. H. Bander, R. Langer, and O. C. Farokhzad, Nanomedicine 5, 361 (2010).
14.Z. Long, M. Q. Xie, T. Zhang, H. Shen, X. Q. Xu, and L. Guo, J. South. Med. Univ. 29, 1827 (2009).
15.M. E. Werner, S. Karve, R. Sukumar, N. D. Cummings, T. Zhang, and A. Z. Wang, Int. J. Radiat. Oncol., Biol., Phys. 81, S146 (2011).
16.J. H. Tian, B. X. Xu, J. M. Zhang, B. W. Dong, P. Liang, and X. D. Wang, J. Nucl. Med. 37, 958 (1996).
17.R. J. Mumper, U. Y. Ryo, and M. Jay, J. Nucl. Med. 32, 2139 (1991).
18.W. Bult, P. R. Seevinck, G. C. Krijger, T. Visser, L. M. J. Kroon-Batenburg, C. J. G. Bakker, W. E. Hennink, A. D. Van Het Schip, and J. F. W. Nijsen, Pharm. Res. 26, 1371 (2009).
19.S. W. Zeilhuis, J. H. Seppenwoolde, C. J. G. Bakker, U. Jahnz, B. A. Zonnenberg, A. D. Van Het Schip, W. E. Hennink, and J. F. W. Nijsen, J. Biomed. Mater. Res., Part A. 82, 892 (2007).
20.J. K. Kim, K. H. Han, J. T. Lee, Y. H. Paik, S. H. Ahn, J. D. Lee, K. S. Lee, C. Y. Chon, and Y. M. Moon, Clin. Cancer Res. 12, 543 (2006).
21.A. J. Di Pasqua, H. Yuan, Y. Chung, J. K. Kim, J. E. Huckle, C. Li, M. Sadgrove, T. H. Tran, M. Jay, and X. Lu, J. Nucl. Med. 54, 111 (2013).
22.R. Huh, Y. S. Park, J. D. Lee, Y. S. Chung, Y. G. Park, S. S. Chung, and J. W. Chang, Yonsei Med. J. 46, 51 (2005).
23.M. J. Piccart, H. Lamb, and J. B. Vermorken, Ann. Oncol. 12, 1195 (2001).
24.J. Cosaert and E. Quoix, Br. J. Cancer 87, 825 (2002).
25.V. M. Sharma and W. R. Wilson, Eur. Arch. Oto-Rhino-Laryngol. 256, 462 (1999).
26.E. B. Douple, R. C. Richmond, J. A. O’Hara, and C. T. Coughlin, Cancer Treat. Rev. 12, 111 (1985).
27.M. Rave-Fraenk, H. Schmidberger, H. Christiansen, C. Boll, J. Lehmann, and E. Weiss, Int. J. Radiat. Biol. 83, 41 (2007).
28.S. Kwon, R. K. Singh, R. A. Perez, E. A. Abou Neel, H.-W. Kim, and W. Chrzanowski, J. Tissue Eng. 4, 19 (2013).
29.I. I. Slowing, J. L. Vivero-Escoto, B. G. Trewyn, and V. S. Y. Lin, J. Mater. Chem. 20, 7924 (2010).
30.D.-S. Moon and J.-K. Lee, Langmuir 28, 12341 (2012).
31.A. Ganguly, T. Ahmad, and A. K. Ganguli, Langmuir 26, 14901 (2010).
32.Y. Cho, R. Shi, R. B. Borgens, and A. Ivanisevic, Nanomedicine 3, 507 (2008).
33.A. Y. Kardys, D. J. Bharali, and S. A. Mousa, J. Nanotechnol. 2013, 768724 (2012).
34.Q. Zhang, K. G. Neoh, L. Xu, S. Lu, E. T. Kang, R. Mahendran, and E. Chiong, Langmuir 30, 6151 (2014).
35.B. Chang, J. Guo, C. Liu, J. Qian, and W. J. Yang, Mater. Chem. 20, 9941 (2010).
36.J. Liu, X. Jiang, C. Ashley, and C. J. Brinker, J. Am. Chem. Soc. 131, 7567 (2009).
37.C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, T. N. Hanna, J. Liu, B. Phillips, M. B. Carter, N. J. Carroll, X. Jiang, D. R. Dunphy, C. L. Willman, D. N. Petsev, D. G. Evans, A. N. Parikh, B. Chackerian, W. Wharton, D. S. Peabody, and C. J. Brinker, Nat. Mater. 10, 389 (2011).
38.E. C. Dengler, J. Liu, A. Kerwin, S. Torres, C. M. Olcott, B. N. Bowman, L. Armijo, K. Gentry, J. Wilkerson, J. Wallace, X. Jiang, E. C. Carnes, C. J. Brinker, and E. D. Miligan, J. Controlled Release 168, 209 (2013).
39.M. A. Wahab, I. Kim, and C. S. Ha, J. Solid State Chem. 177, 3439 (2004).
40.G. Qi, L. Fu, X. Duan, B. H. Choi, M. Abraham, and E. P. Giannelis, Greenhouse Gases: Sci. Technol. 1, 278 (2011).
41.J. F. Díaz, K. J. Balkus, Jr., F. Bedioui, V. Kurshev, and L. Kevan, Chem. Mater. 9, 61 (1997).
42.H. Zhu, D. J. Jones, J. Zajac, R. Dutartre, M. Rhomari, and J. Rozière, Chem. Mater. 14, 4886 (2002).
43.R. G. Krishan, “Catalysis by polymer supported dendrimers, their metal complexes and nanoparticle conjugates,” Ph.D. thesis, Cochin University of Science and Technology, Kochi-22, India, 2008.
44.Y. G. Ko, U. S. Choi, T. Y. Kim, D. J. Ahn, and Y. J. Chun, Macromol. Rapid Commun. 23, 535 (2002).<535::AID-MARC535>3.0.CO;2-S
45.J. H. Forsberg and A. C. Wathen, Inorg. Chem. 10, 1379 (1971).
46.R. S. Prosser, V. B. Volkov, and I. V. Shiyanovskaya, Biophys. J. 75, 2163 (1998).
47.V. Polshettiwar and J. M. Basset, “High Surface Area Fibrous Silica Nanoparticles,” U.S. patent 20110253643A1 (20 October 2011).
48.See supplementary material at for FTIR spectra of 165Ho-MS np before and after surfactant removed and CPB surfactant, TEM image of formation of 165Ho-MS np after 6 h, 12 h, 18 h, and 21 h reaction times at 70 °C, secondary electron images for Si, Ho, and O mapping and elemental spectrum of 165Ho-MS np, percentage variation of cisplatin drug loading in to 165Ho-MS np with the time, EDX mapping and spectrum of cisplatin loaded Ho-MS, carboplatin loaded Ho-MS and oxaliplatin loaded Ho-MS, size distribution curve of DOPC-165Ho-MS and 165Ho-MS np in simulated body fluid solution and digital image of the DOPC-165Ho-MS dispersion, zeta potential measurements of DOPC-165Ho-MS-cisplatin np, DOPC-165Ho-MS-carboplatin np and DOPC-165Ho-MS-oxaliplatin np.[Supplementary Material]
49.Z. Wang, B. Chen, G. Quan, F. Li, Q. Wu, L. Dian, Y. Dong, G. Li, and C. Wu, Int. J. Nanomed. 7, 5807 (2012).
50.X. Yan and R. A. Gemeinhart, J. Controlled Release 106, 198 (2005).
51.R. Wysokiński, J. Kuduk-Jaworska, and D. Michalska, J. Mol. Struct.: THEOCHEM 758, 169 (2006).
52.P. Tyagi, P. Gahlot, and R. Kakkar, Polyhedron 27, 3567 (2008).
53.L. P. Singh, S. K. Agarwal, S. K. Bhattacharyya, U. Sharma, and S. Ahalawat, Nanomater. Nanotechnol. 1, 44 (2011).
54.R. Ishii, H. Mori, K. Matsumura, N. Hongo, H. Kiyosue, S. Matsumoto, T. Yoshimi, and S. Ujiie, J. Biomed. Sci. Eng. 5, 24 (2012).
55.A. J. Di Pasqua, M. L. Miller, X. Lu, L. Peng, and M. Jay, Inorg. Chim. Acta 393, 334 (2012).
56.M. Hamoudeh, H. Fessi, H. Salim, and D. Barbos, Drug Dev. Ind. Pharm. 34, 796 (2008).
57.D. Cacaina, S. Areva, H. Laaksonen, S. Simon, and H. Ylaenen, J. Mater. Sci.: Mater. Med. 22, 29 (2011).
58.X. Lu, D. Hargrove, T.-H. Tran, and A. Salner, J. Nucl. Med. 55, 210 (2014).
59.J. D. X. Bradley, J. R. Roti, and S. Mutic, “Principles and practice of radiation therapy,” in The Washington Manual of Oncology, 2nd ed., edited by R. Govindan (Lippincott Williams & Wilkins, 2007).
60.T. Suteewong, H. Sai, R. Cohen, S. Wang, M. Bradbury, B. Baird, S. M. Gruner, and U. Wiesner, J. Am. Chem. Soc. 133, 172 (2011).
61.J. Li, Y. Yang, and L. Huang, J. Controlled Release 158, 108 (2012).
62.A. S. Al-Kady, M. Gaber, M. M. Hussein, and E.-Z. M. Ebeid, Eur. J. Pharm. Biopharm. 77, 66 (2011).
63.S. Bhattacharyya, H. Wang, and P. Ducheyne, Acta Biomater. 8, 3429 (2012).
64.K. Radhakrishnan, S. Gupta, D. P. Gnanadhas, P. C. Ramamurthy, D. Chakravortty, and A. M. Raichur, Part. Part. Syst. Charact. 31, 449 (2014).
65.S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Pol. Pharm. Drug Res. 67, 217 (2010).

Data & Media loading...


Article metrics loading...



Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl--glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd