Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4899119
1.
1.T. Asefa, M. J. MacLachlan, N. Coombs, and G. A. Ozin, Nature 402, 867 (1999).
http://dx.doi.org/10.1038/47229
2.
2.S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc. 121, 9611 (1999).
http://dx.doi.org/10.1021/ja9916658
3.
3.J. A. Melero, R. van Grieken, and G. Morales, Chem. Rev. 106, 3790 (2006).
http://dx.doi.org/10.1021/cr050994h
4.
4.B. Lee, Y. Kim, H. Lee, and J. Yi, Microporous Mesoporous Mater. 50, 77 (2001).
http://dx.doi.org/10.1016/S1387-1811(01)00437-1
5.
5.C. Lesaint, B. Lebeau, C. Marichal, and J. Patarin, Microporous Mesoporous Mater. 83, 76 (2005).
http://dx.doi.org/10.1016/j.micromeso.2005.01.012
6.
6.A. S. M. Chong, X. S. Zhao, A. T. Kustedjok, and S. Z. Qiao, Microporous Mesoporous Mater. 72, 33 (2004).
http://dx.doi.org/10.1016/j.micromeso.2004.04.015
7.
7.A. S. M. Chong and X. S. Zhao, Appl. Surf. Sci. 237, 398 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.06.080
8.
8.L. Wang, T. Qi, and Y. Zhang, Colloids Surf. A 275, 73 (2006).
http://dx.doi.org/10.1016/j.colsurfa.2005.06.075
9.
9.T. Asefa, M. Kruk, M. J. MacLachlan, N. Coombs, H. Grondey, M. Jaroniec, and G. A. Ozin, J. Am. Chem. Soc. 123, 8520 (2001).
http://dx.doi.org/10.1021/ja0037320
10.
10.M. C. Bruzzoniti, A. Prelle, C. Sarzanini, B. Onida, S. Fiorilli, and E. Garrone, J. Sep. Sci. 30, 2414 (2007).
http://dx.doi.org/10.1002/jssc.200700182
11.
11.K. Y. Ho, G. McKay, and K. L. Yeung, Langmuir 19, 3019 (2003) {};
http://dx.doi.org/10.1021/la0267084
11.Z. Yan, S. Tao, J. Yin, and G. Li, J. Mater. Chem. 16, 2347 (2006) {};
http://dx.doi.org/10.1039/b600611f
11.C.-T. Tsai, Y.-C. Pan, C.-C. Ting, S. Vetrivel, A. S. T. Chiang, G. T. K. Fey, and H.-M. Kao, Chem. Commun. 2009, 5018.
http://dx.doi.org/10.1039/b909680a
12.
12.H.-M. Kao, Y.-W. Chen, J. R. Deka, and K. C.-W. Wu, Chem. - Eur. J. 19, 6358 (2013).
http://dx.doi.org/10.1002/chem.201204400
13.
13.A. Kuschel and S. Polarz, Adv. Funct. Mater. 18, 1272 (2008).
http://dx.doi.org/10.1002/adfm.200701252
14.
14.C.-C. Ting, C.-H. Chung, and H.-M. Kao, Chem. Commun. 47, 5897 (2011) {};
http://dx.doi.org/10.1039/c1cc10512d
14.H.-M. Kao, C.-H. Chung, D. Saikia, S.-H. Liao, P.-Y. Chao, Y.-H. Chen, and K. C.-W. Wu, Chem. - Asian J. 7, 2111 (2012).
http://dx.doi.org/10.1002/asia.201200244
15.
15.R.-J. van Putten, J. C. van derWaal, E. de Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries, Chem. Rev. 113, 1499 (2013).
http://dx.doi.org/10.1021/cr300182k
16.
16.A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411 (2007).
http://dx.doi.org/10.1021/cr050989d
17.
17.G. W. Huber, J. N. Chheda, C. J. Barrett, and J. A. Dumesic, Science 308, 1446 (2005).
http://dx.doi.org/10.1126/science.1111166
18.
18.E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz, C. A. Gärtner, and J. A. Dumesic, Science 322, 417 (2008).
http://dx.doi.org/10.1126/science.1159210
19.
19.H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, Science 316, 1597 (2007).
http://dx.doi.org/10.1126/science.1141199
20.
20.A. S. Amarasekara, L. D. Williams, and C. C. Ebede, Carbohydr. Res. 343, 3021 (2008).
http://dx.doi.org/10.1016/j.carres.2008.09.008
21.
21.R. Alamillo, A. J. Crisci, J. M. R. Gallo, S. L. Scott, and J. A. Dumesic, Angew. Chem., Int. Ed. 52, 10349 (2013).
http://dx.doi.org/10.1002/anie.201304693
22.
22.M. H. Tucker, A. J. Crisci, B. N. Wigington, N. Phadke, R. Alamillo, J. Zhang, S. L. Scott, and J. A. Dumesic, ACS Catal. 2, 1865 (2012).
http://dx.doi.org/10.1021/cs300303v
23.
23.Y. X. Zhou, S. Q. Hu, X. M. Ma, S. G. Liang, T. Jiang, and B. X. Han, J. Mol. Catal. A: Chem. 284, 52 (2008).
http://dx.doi.org/10.1016/j.molcata.2008.01.010
24.
24.A. Modak, J. Mondal, and A. Bhaumik, ChemCatChem 5, 1749 (2013).
http://dx.doi.org/10.1002/cctc.201300009
25.
25.M. Thommes, R. Köhn, and M. Fröba, J. Phys. Chem. B 104, 7932 (2000).
http://dx.doi.org/10.1021/jp994133m
26.
26.S. Huh, J. W. Wiench, J.-C. Yoo, M. Pruski, and V. S.-Y. Lin, Chem. Mater. 15, 4247 (2003).
http://dx.doi.org/10.1021/cm0210041
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4899119 for (1) 13C CPMAS NMR spectra of the COOH-functionalized PMO (Figure S1), (2) TGA and DTA curves of the COOH-functionalized PMO (Figure S2) and (3) Adsorption of fructose with varied COOH loading of PMOs at different time scale (Table S1).[Supplementary Material]
28.
28.S. Dutta, A. Bhaumik, and K. C.-W. Wu, Energy Environ. Sci. 2014, 3574.
http://dx.doi.org/10.1039/C4EE01075B
29.
29.S. Dutta, K. C.-W. Wu, and B. Saha, Catal. Sci. Technol. 4, 3785 (2014).
http://dx.doi.org/10.1039/C4CY00701H
30.
30.Y.-Y. Lee and K. C.-W. Wu, Phys. Chem. Chem. Phys. 14, 13914 (2012).
http://dx.doi.org/10.1039/c2cp42751f
31.
31.W.-H. Peng, Y.-Y. Lee, C. Wu, and K. C.-W. Wu, J. Mat. Chem. 22, 23181 (2012).
http://dx.doi.org/10.1039/c2jm35391a
32.
32.Y.-C. Lee, C.-T. Chen, Y.-T. Chiu, and K. C.-W. Wu, ChemCatChem 5, 2153 (2013).
http://dx.doi.org/10.1002/cctc.201300219
33.
33.S. V. de Vyver, L. Peng, J. Geboers, H. Schepers, F. de Clippel, C. J. Gommes, B. Goderis, P. A. Jacobs, and B. F. Sels, Green Chem. 12, 1560 (2010).
http://dx.doi.org/10.1039/c0gc00235f
34.
34.J. Pang, A. Wang, M. Zheng, and T. Zhang, Chem. Commun. 2010, 6935.
http://dx.doi.org/10.1039/c0cc02014a
35.
35.H. Kobayashi, T. Komanoya, K. Hara, and A. Fukuoka, ChemSusChem 3, 440 (2010).
http://dx.doi.org/10.1002/cssc.200900296
36.
36.D.-M. Lai, L. Deng, J. Li, B. Liao, Q.-X. Guo, and Y. Fu, ChemSusChem 4, 55 (2011).
http://dx.doi.org/10.1002/cssc.201000300
37.
37.T. Komanoya, H. Kobayashi, K. Hara, W.-J. Chun, and A. Fukuoka, Appl. Catal., A 407, 188 (2011).
http://dx.doi.org/10.1016/j.apcata.2011.08.039
38.
38.P.-W. Chung, A. Charmot, O. A. Olatunji-Ojo, K. A. Durkin, and A. Katz, ACS Catal. 4, 302 (2014).
http://dx.doi.org/10.1021/cs400939p
39.
39.I.-J. Kuo, N. Suzuki, Y. Yamauchi, and K. C.-W. Wu, RSC Adv. 3, 2028 (2013).
http://dx.doi.org/10.1039/c2ra21805d
40.
40.H. Kobayashi and A. Fukuoka, Green Chem. 15, 1740 (2013).
http://dx.doi.org/10.1039/c3gc00060e
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4899119
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4899119
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4899119
2014-10-28
2016-12-07

Abstract

This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4899119.html;jsessionid=sYDVTH-lzbT1SIzu7xK8I0_R.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4899119&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4899119&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4899119'
Top,Right1,Right2,Right3,