Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4900816
1.
1.J. A. Wilson and A. D. Yoffe, Adv. Phys. 18(73), 193 (1969).
http://dx.doi.org/10.1080/00018736900101307
2.
2.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7(11), 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
3.
3.P. Hajiyev, C. Cong, C. Qiu, and T. Yu, Sci. Rep. 3, 2593 (2013).
http://dx.doi.org/10.1038/srep02593
4.
4.A. H. C. Neto, Phys. Rev. Lett. 86(19), 4382 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4382
5.
5.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105(13), 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
6.
6.L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science 340(6138), 1311 (2013);
http://dx.doi.org/10.1126/science.1235547
6.L. Kou, T. Frauenheim, and C. Chen, J. Phys. Chem. Lett. 4(10), 1730 (2013).
http://dx.doi.org/10.1021/jz400668d
7.
7.M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5(4), 263 (2013);
http://dx.doi.org/10.1038/nchem.1589
7.K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Nat. Nanotechnol. 8(11), 826 (2013).
http://dx.doi.org/10.1038/nnano.2013.206
8.
8.W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. C. Neto, and G. Eda, Nano Lett. 13(11), 5627 (2013).
http://dx.doi.org/10.1021/nl403270k
9.
9.Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6(1), 74 (2011).
http://dx.doi.org/10.1021/nn2024557
10.
10.D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108(19), 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
11.
11.A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10(4), 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
12.
12.Y. Wang, C. Cong, C. Qiu, and T. Yu, Small 9(17), 2857 (2013).
http://dx.doi.org/10.1002/smll.201202876
13.
13.N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, and T. Yu, “Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy,” Nano Res. (submitted) .
http://dx.doi.org/10.1007/s12274-014-0602-0
14.
14.Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, Nano Lett. 13(8), 3870 (2013).
http://dx.doi.org/10.1021/nl401938t
15.
15.H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, Nano Lett. 13(8), 3447 (2012).
http://dx.doi.org/10.1021/nl3026357
16.
16.Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, ACS Nano 7(10), 8963 (2013).
http://dx.doi.org/10.1021/nn403454e
17.
17.C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, Adv. Opt. Mater. 2(2), 131 (2014).
http://dx.doi.org/10.1002/adom.201300428
18.
18.N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, ACS Nano 7(12), 10985 (2013).
http://dx.doi.org/10.1021/nn4046002
19.
19.J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition metal dichalcogenide semiconductor ,'' (submitted).
20.
20.N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Monolayer WS2,” ACS Nano. (submitted) .
http://dx.doi.org/10.1021/nn504196n.
21.
21.Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, Nat. Commun. 4, 1811 (2013).
http://dx.doi.org/10.1038/ncomms2830
22.
22.M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, Nano Lett. 11(10), 4134 (2011).
http://dx.doi.org/10.1021/nl2019068
23.
23.O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8(7), 497 (2013).
http://dx.doi.org/10.1038/nnano.2013.100
24.
24.W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, Jr-H. He, M.-Y. Chou, and L.-J. Li, Sci. Rep. 4, 3826 (2014).
http://dx.doi.org/10.1038/srep03826
25.
25.W. J. Zhao, Z. Ghorannevis, L. Q. Chu, M. L. Toh, C. Kloc, P. H. Tan, and G. Eda, ACS Nano 7(1), 791 (2013).
http://dx.doi.org/10.1021/nn305275h
26.
26.N. A. Modine, A. M. Armstrong, M. H. Crawford, and W. W. Chow, J. Appl. Phys. 114(14), 144502 (2013).
http://dx.doi.org/10.1063/1.4824065
27.
27.S. H. Lee, D. Lee, W. S. Hwang, E. Hwang, D. Jena, and W. J. Yoo, Appl. Phys. Lett. 104(19), 193113 (2014).
http://dx.doi.org/10.1063/1.4878335
28.
28.N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, and S. Ghosh, Adv. Funct. Mater. 23(44), 5511 (2013).
http://dx.doi.org/10.1002/adfm.201300760
29.
29.S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Nano Lett. 14(4), 2019 (2014).
http://dx.doi.org/10.1021/nl500171v
30.
30.B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).
31.
31.Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, Adv. Funct. Mater. 17(11), 1795 (2007).
http://dx.doi.org/10.1002/adfm.200600351
32.
32.G. Finkelstein, H. Shtrikman, and I. Bar-Joseph, Phys. Rev. Lett. 74(6), 976 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.976
33.
33.M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Nano Lett. 14(6), 3347 (2014).
http://dx.doi.org/10.1021/nl5008085
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4900816
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4900816
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4900816
2014-11-03
2016-09-29

Abstract

High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD) method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup), while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4900816.html;jsessionid=3G_QkgJXlayqDlsX6bazCCnw.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4900816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4900816&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4900816'
Top,Right1,Right2,Right3,