Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. H. Crabtree, The Organic Chemistry of Transition Metals, 5th ed. (John Wiley & Sons, Inc., New York, USA, 2009);
1.M. Beller and C. Bolm, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed. (Wiley-VCH Verlag, Weinheim, 2008);
1.P. B. Kettler, Org. Process Res. Dev. 7, 342354 (2003).
2.(a)L. L. Chng, N. Erathodiyil, and J. Y. Ying, Acc. Chem. Res. 46, 18251837 (2013);
2.(b)E. Gross, J. M. Krier, L. Heinke, and G. A. Somorjai, Top. Catal. 55, 1323 (2012);
2.(c)H. Cong and J. A. Porco, Jr., ACS Catal. 2, 6570 (2012);
2.(d)M. J. Climent, A. Corma, and S. Iborra, Chem. Rev. 111, 10721133 (2011);
2.(e) Nanoparticles and Catalysis, edited by D. Astruc (Wiley-WCH, Weinheim, 2008).
3.K. An and G. A. Somorjai, ChemCatChem 4, 15121524 (2012);
3.H. Bönneman and R. M. Richards, Eur. J. Inorg. Chem. 2001, 24552480¡2455::AID-EJIC2455¿3.0.CO;2-Z
4.D. S. Su, in Nanomaterials in Catalysis, 1st ed., edited by P. Serp and K. Phillipot (Wiley-VCH, Weinheim, 2013), pp. 331374;
4.L. F. Malbena, S. Sinha Ray, S. D. Mhlanga, and N. J. Coville, Appl. Nanosci. 1, 6777 (2011);
4.G. G. Wildgoose, C. E. Banks, and R. G. Compton, Small 2, 182193 (2006).
5.H.-L. Jiang and Q. Xu, Chem. Commun. 47, 33513370 (2011);
5.A. Corma, H. García, and F. X. Llabrés i Xamena, Chem. Rev. 110, 46064655 (2010);
5.V. Pascanu, Q.-X. Yao, A. Bermejo Gómez, M. Gustafsson, Y.-F. Yun, W. Wan, L. Samain, X. D. Zou, and B. Martín-Matute, Chem.- Eur. J. 19, 1748317493 (2013).
6.V. Hulea and E. Dumitriu, in Nanomaterials in Catalysis, 1st ed., edited by P. Serp and K. Phillipot (Wiley-VCH, Weinheim, 2013), pp. 375413;
6.M. Flytzani-Stephanopoulos and B. C. Gates, Annu. Rev. Chem. Biomol. Eng. 3, 545574 (2012);
6.T. Barakat, J. C. Rooke, H. L. Tidahy, M. Hosseini, R. Cousin, J.-F. Lamonier, J.-M. Giraudon, G. De Weireld, B.-L. Su, and S. Siffert, ChemSusChem 4, 14201430 (2011).
7.D. Astruc, A. Diallo, and C. Ornelas, in Nanomaterials in Catalysis, 1st ed., edited by P. Serp and K. Phillipot (Wiley-VCH, Weinheim, 2013), pp. 97122;
7.E. Guibal, Prog. Polym. Sci. 30, 71109 (2005);
7.R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Acc. Chem. Res. 34, 181190 (2001);
7.M. Králik and A. Biffis, J. Mol. Catal. A: Chem. 117, 113138 (2001).
8.R. Luque, A. M. Balu, J. M. Campelo, M. D. Gracia, E. Losada, A. Pineda, A. A. Romero, and J. C. Serrano-Ruiz, Catalysis 24, 253280 (2012);
8.D. Astruc, Inorg. Chem. 46, 18841894 (2007);
8.A. Taguchi and F. Schüth, Microporous Mesoporous Mater. 77, 145 (2005).
9.See supplementary material at for HRSEM image of MSNs showing their morphology and sizes ranging from 28 to 45 nm; N2 adsorption-desorption isotherms of MSN and AmP-MSN with a specific surface area of 331 m2 g−1, a total pore volume of 1.83 cm3 g−1; the reconstructured tomogram of Pd loaded MSNs, which shows that the mesopores are open to the external surface of the MSNs; bright-field TEM image showing the Pd-MSNs used for electron tomography data collection and reconstruction of Movie S1; STEM image showing the Pd-MSNs used for electron tomography data collection and analysis; slices cut out from the reconstructed tomogram of Pd-MSNs, which indicates that the Pd nanoparticles are on the external surface of the MSNs; and Movie S2, electron tomography performed using STEM images, to locate the positions of the Pd nanoparticles.[Supplementary Material]
10.(a)N. Nebra, J. Monot, R. Shaw, B. Martin-Vaca, and D. Bourissou, ACS Catal. 3, 29302934 (2013);
10.(b)J. García-Álvarez, J. Díez, and C. Vidal, Green Chem. 14, 31903196 (2012);
10.(c)R. Rossi, F. Bellina, M. Biagetti, A. Catanese, and L. Mannina, Tetrahedron Lett. 41, 52815286 (2000);
10.(d)D. Bouyssi, J. Gore, and G. Balme, Tetrahedron Lett. 33, 28112814 (1992);
10.(e)N. Yanagihara, C. Lambert, K. Iritani, K. Utimoto, and H. Nozaki, J. Am. Chem. Soc. 108, 27532754 (1986).
11.(a)A. Nagendiran, O. Verho, C. Haller, E. V. Johnston, and J.-E. Bäckvall, J. Org. Chem. 79, 13991405 (2014);
11.(b)F. Neatu, L. Protesescu, M. Florea, V. I. Parvulescu, C. M. Teodorescu, N. Apostol, P. Y. Toullec, and V. Michelet, Green Chem. 12, 21452149 (2010).
12.X. Yang, Y. Shimizu, J. R. Steiner, and J. Clardy, Tetrahedron Lett. 34, 761764 (1993);
12.X.-P. Fang, J. E. Anderson, C.-J. Chang, and J. L. McLaughlin, Tetrahedron 47, 97519758 (1991);
12.D. Kuhnt, T. Anke, H. Besl, M. Bross, R. Herrmann, U. Mocek, B. Stefan, and W. J. Steglich, J. Antibiot. 43, 14131420 (1990);
12.R. Kazlauskas, P. T. Murphy, R. J. Quinn, and R. J. Wells, Tetrahedron Lett. 18, 3740 (1977).
13.E. V. Johnston, O. Verho, M. D. Kärkäs, M. Shakeri, C.-W. Tai, P. Palmgren, K. Eriksson, S. Oscarsson, and J.-E. Bäckvall, Chem.- Eur. J. 18, 1220212206 (2012);
13.M. Shakeri, C. W. Tai, E. Göthelid, S. Oscarsson, and J. E. Bäckvall, Chem.- Eur. J. 17, 1326913273 (2011).
14.Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Heterocycles 86, 947954 (2012).

Data & Media loading...


Article metrics loading...



Ultra-small mesoporous silica nanoparticles (MSNs) have been synthesized at room temperature with particle sizes ranging from 28 to 45 nm. These MSNs have been employed as heterogeneous supports for palladium and gold nanocatalysts. The colloidal nature of the MSNs is highly useful for catalytic applications as it allows for better mass transfer properties and a more uniform distribution of the nanocatalysts in solution. The two nanocatalysts were evaluated in the cycloisomerization of alkynoic acids and demonstrated to produce the corresponding alkylidene lactones in good to excellent yields under mild conditions. In addition to their high activity, the catalysts exhibit low degree of metal leaching and straight-forward recycling, which highlight the practical utility of MSNs as supports for nanocatalysts.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd