Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/11/10.1063/1.4901295
1.
1.A. Othonos, M. Zervos, and D. Tsokkou, Nanoscale Res. Lett. 4, 828 (2009).
http://dx.doi.org/10.1007/s11671-009-9323-9
2.
2.D. Tsokkou, A. Othonos, and M. Zervos, Appl. Phys. Lett. 100, 133101 (2012).
http://dx.doi.org/10.1063/1.3698097
3.
3.D. Tsokou, M. Zervos, and A. Othonos, J. Appl. Phys. 106, 084307 (2009).
http://dx.doi.org/10.1063/1.3245339
4.
4.M. Zervos, C. Mihailescu, J. Giapintzakis et al., APL Mater. 2, 056104 (2014).
http://dx.doi.org/10.1063/1.4875457
5.
5.S. Ngamsinlapasathian, T. Sreethawong, and Y. Suzuki, Sol. Energy Mater. Sol. Cells 90, 2129 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.12.005
6.
6.Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89, 123102 (2006).
http://dx.doi.org/10.1063/1.2345278
7.
7.J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, and X. C. Ma, Nanotechnology 22, 195706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/19/195706
8.
8.N. Barreau, S. Marsillac, D. Albertini, and J. C. Bernede, Thin Solid Films 403, 331 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01512-7
9.
9.R. Sharma, G. Cai, D. V. Shinde, S. A. Patil, S. Shaikh, A. V. Ghule, R. S. Maneb, and S. H. Han, J. Mater. Chem. C 2, 8012 (2014).
http://dx.doi.org/10.1039/C4TC01428F
10.
10.J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Nat. Nanotechnol. 6, 568 (2011).
http://dx.doi.org/10.1038/nnano.2011.139
11.
11.A. Othonos, M. Zervos, and C. Christofides, J. Appl. Phys. 108, 124302 (2010).
http://dx.doi.org/10.1063/1.3520589
12.
12.Z. Liu, J. Han, L. Han, K. Guo et al., Mater. Chem. Phys. 141, 804 (2013).
http://dx.doi.org/10.1016/j.matchemphys.2013.06.007
13.
13.X. Liu, M. T. Mayer, and D. Wang, Appl.Phys.Lett. 96, 223103 (2010).
http://dx.doi.org/10.1063/1.3442919
14.
14.X. C. Jiang, Y. Xie, J. Lu, W. He, L. Y. Zhu, and Y. T. Qian, J. Mater. Chem. 10, 2193 (2000).
http://dx.doi.org/10.1039/b002486o
15.
15.K. D. Yuan, J. J. Wu, M. L. Liu, L. L. Zhang, F. F. Xu et al., Appl.Phys.Lett. 93, 132106 (2008).
http://dx.doi.org/10.1063/1.2991441
16.
16.M. A. Sangamesha, K. Pushpalatha, G. L. Shekar et al., ISRN Nanomater. 2013, 1 (2013).
http://dx.doi.org/10.1155/2013/829430
17.
17.S. Thanikaikarasan, T. Mahalingam et al., J. New Mater. Electrochem. Syst. 13, 29 (2010).
18.
18.C. Wu, Z. Zhang, Y. Wu, P. Lv, B. Nie, L. Luo et al., Nanotechnology 24, 045402 (2013).
http://dx.doi.org/10.1088/0957-4484/24/4/045402
19.
19.T. Ghoshal, R. Senthamaraikannan, M. T. Shaw et al., Adv. Mater. 26, 1207 (2014).
http://dx.doi.org/10.1002/adma.201304096
20.
20.X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn et al., J. Phys. Chem. Lett. 4, 2002 (2013).
http://dx.doi.org/10.1021/jz400533
21.
21.P. S. Vasekar and T. P. Dhakal, Sol. Cells Res. Appl. Perspect. 6 , 145 (2013), ISBN 978-953-51-1003-3.
22.
22.T. K. Todorov, K. B. Reuter, and D. B. Mitzi, Adv. Mater. 22, 156 (2010).
http://dx.doi.org/10.1002/adma.200904155
23.
23.Q. J. Guo, H. W. Hillhouse, and R. Agrawal, J. Am. Chem. Soc. 131, 11672 (2009).
http://dx.doi.org/10.1021/ja904981r
24.
24.C. Steinhagen, M. G. Panthani, V. Akhavan et al., J. Am. Chem. Soc. 131, 12554 (2009).
http://dx.doi.org/10.1021/ja905922j
25.
25.Y. Ni, R. Liu, X. Cao, X. Wei, and J. Hong, Mater. Lett. 61, 1986 (2007).
http://dx.doi.org/10.1016/j.matlet.2006.07.182
26.
26.C. Wu, J. B. Shi, C. J. Chen, Y. C. Chen, Y. T. Lin et al., Mater. Lett. 62, 1074 (2008).
http://dx.doi.org/10.1016/j.matlet.2007.07.046
27.
27.P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, J. Phys. D: Appl. Phys. 43, 215403 (2010).
http://dx.doi.org/10.1088/0022-3727/43/21/215403
28.
28.Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao et al., NPG Asia Mater. 4, e30 (2012).
http://dx.doi.org/10.1038/am.2012.56
29.
29.C. O’Dwyer, M. Szachowicz, G. Visimberga et al., Nat. Nanotechnol. 4, 239 (2009).
http://dx.doi.org/10.1038/nnano.2008.418
30.
30.M. Zervos, A. Othonos, D. Tsokkou, J. Kioseoglou et al., Phys. Status Solidi A 210, 226 (2013).
http://dx.doi.org/10.1002/pssa.201200403
31.
31.J. S. Cruz, S. A. M. Hernández, F. P. Delgado et al., Int. J. Photoenergy 2013, 178017 (2013).
http://dx.doi.org/10.1155/2013/178017
32.
32.M. Zervos, Phys. Status Solidi RRL 7, 894 (2013).
http://dx.doi.org/10.1002/pssr.201307139
33.
33.F. Yi, E. Shim, A. Y. Zhu, H. Zhu, and J. C. Reed, Appl. Phys. Lett. 102, 221102 (2013).
http://dx.doi.org/10.1063/1.4809516
34.
34.S. H. Brewer and S. Franzen, Chem. Phys. 300, 285 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.11.039
35.
35.M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).
http://dx.doi.org/10.1016/j.progsurf.2005.09.002
36.
36.K. Button, C. Fonstad, and W. Dreybrodt, Phys. Rev. B 4, 4539 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.4539
37.
37.Y. Zhao et al., J. Am. Chem. Soc. 131, 4253 (2009).
http://dx.doi.org/10.1021/ja805655b
38.
38.J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, Nat. Mater. 10, 361 (2011).
http://dx.doi.org/10.1038/nmat3004
39.
39.E. Güneri and A. Kariper, J. Alloys Compd. 516, 20 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.11.054
40.
40.S. Gupta, Y. Batra, B. R. Mehta, and V. R. Satsangi, Nanotechnology 24, 255703 (2013).
http://dx.doi.org/10.1088/0957-4484/24/25/255703
41.
41.C. Nascu, I. Pop, V. Ionescu, E. Indrea, and I. Bratu, Mater. Lett. 32, 73 (1997).
http://dx.doi.org/10.1016/S0167-577X(97)00015-3
42.
42.S. Panigrahi and D. Basak, RSC Adv. 2, 11963 (2012).
http://dx.doi.org/10.1039/c2ra21518g
43.
43.S. Siol, H. Sträter, R. Brüggemann et al., J. Phys. D: Appl. Phys. 46, 495112 (2013).
http://dx.doi.org/10.1088/0022-3727/46/49/495112
44.
44.F. Säuberlich and A. Klein, Mater. Res. Soc. Symp. Proc. 763 , B9.10 (2013).
http://dx.doi.org/10.1557/PROC-763-B9.10
45.
45.Y. Jiang, X. Zhang, Q. Q. Ge, B. B. Yu et al., ACS Appl. Mater. Interfaces 6, 15448 (2014).
http://dx.doi.org/10.1021/am504057y
46.
46.O. Madelung, Semiconductors Other than IV and III-Vs (Springer, Berlin, 1992), p. 149.
47.
47.A. S. Ahmed, A. Azam, M. M. Shafeeq et al., J. Phys. Chem. Solids 73, 943 (2012).
http://dx.doi.org/10.1016/j.jpcs.2012.02.030
48.
48.I. Giebelhaus, E. Varechkina, T. Fischer et al., J. Mater. Chem. A 1, 11261 (2013).
http://dx.doi.org/10.1039/c3ta11867c
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/11/10.1063/1.4901295
Loading
/content/aip/journal/aplmater/2/11/10.1063/1.4901295
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/11/10.1063/1.4901295
2014-11-12
2016-12-10

Abstract

SnO and Sn:InO nanowires were grown on Si(001), and p-n junctions were fabricated in contact with p-type Cu S which exhibited rectifying current–voltage characteristics. Core-shell Cu SnS /SnO and CuInS/Sn:InO nanowires were obtained by depositing copper and post-growth processing under HS between 100 and 500 °C. These consist mainly of tetragonal rutile SnO and cubic bixbyite InO. We observe photoluminescence at 3.65 eV corresponding to band edge emission from SnO quantum dots in the Cu SnS /SnO nanowires due to electrostatic confinement. The Cu SnS /SnO nanowires assemblies had resistances of 100 Ω similar to CuInS/InO nanowires which exhibited photoluminescence at 3.0 eV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/11/1.4901295.html;jsessionid=-0xfcJD-pZDGAuUHClOvQ5xj.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/11/10.1063/1.4901295&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/11/10.1063/1.4901295&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/11/10.1063/1.4901295'
Top,Right1,Right2,Right3,