Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Makino, T. Hatanai, Y. Naitoh, T. Bitoh, A. Inoue, and T. Masumoto, IEEE Trans. Magn. 33, 3793 (1997).
2.T. Osaka, M. Takai, K. Hayashi, K. Ohashi, M. Saito, and K. Yamada, Nature 392, 796 (1998).
3.O. Margeat, D. Ciuculescu, P. Lecante, M. Respaud, C. Amiens, and B. Chaudret, Small 3, 451 (2007).
4.M. Benelmekki, M. Bohra, J.-H. Kim, R. E. Diaz, J. Vernieres, P. Grammatikopoulos, and M. Sowwan, Nanoscale 6, 3532 (2014).
5.V. Singh, C. Cassidy, P. Grammatikopoulos, F. Djurabekova, K. Nordlund, and M. Sowwan, J. Phys. Chem. C 118, 13869 (2014).
6.See supplementary information material at for detailed experimental setup and conditions, additional characterization data for the morphology and crystal phase, and harvesting procedure.[Supplementary Material]
7.H. Graupner, L. Hammer, K. Heinz, and D. M. Zehner, Surf. Sci. 380, 335351 (1997).
8.E. Quesnel, E. Pauliac-Vaujour, and V. Muffato, J. Appl. Phys. 107, 054309 (2010).
9.Y.-H. Xu and J.-P. Wang, Adv. Mater. 20, 994 (2008).
10.G. Krishnan, M. A. Verheijen, G. H. ten Brink, G. Palasantzas, and B. J. Kooi, Nanoscale 5, 5375 (2013).
11.J. Yang, W. Hu, J. Tang, and X. Dai, Comput. Mater. Sci. 74, 160 (2013).
12.J. Yang, W. Hu, J. Tang, and X. Dai, J. Nanopart. Res. 15, 1719 (2013).
13.J. Yang, W. Hu, and J. Tang, RSC Adv. 4, 2155 (2014).
14.J. Breuer, Ph.D. thesis, University of Stuttgart, Germany, 2001.
15.J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin Elmer Corporation, 1992), ISBN 0-9627026-2-5.
16.T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).
17.G. A. C. Rodriguez, G. G. Guillen, M. I. M. Palma, T. K. D. Roy, A. M. G. Hernandez, B. Krishnan, and S. Shaji, “Synthesis and Characterization of Hercynite Nanoparticles by Pulsed Laser Ablation in Liquid Technique,” Int. J. Appl. Ceram. Technol. (to be published).
18.Y. B. Pithawalla, M. S. El-Shall, S. C. Deevi, V. Strom, and K. V. Rao, J. Phys. Chem. B 105, 2085 (2001).
19.K. Suresh, V. Selvarajan, and I. Mohai, Vaccum 82, 482 (2008).
20.S. Chen, Y. Chen, Y. Tang, B. Luo, Z. Yi, J. Wei, and W. Sun, J. Cent. South Univ. 20, 845 (2013).
21.M. Kaur, J. S. McCloy, W. Jiang, Q. Yao, and Y. Qiang, J. Phys. Chem. C 116, 12875 (2012).
22.N. A. Frey, S. Peng, K. Cheng, and S. Sun, Chem. Soc. Rev. 38, 2532 (2009).
23.A. Meffre, B. Mehdaoui, V. Kelsen, P. F. Fazzini, J. Carrey, S. Lachaize, M. Respaud, and B. Chaudret, Nano Lett. 12, 4722 (2012).
24.G. Huang, J. Hu, H. Zhang, Z. Zhou, X. Chi, and J. Gao, Nanoscale 6, 726 (2014).
25.P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C. J. Serna, J. Phys. D: Appl. Phys. 36, R182 (2003).
26.L. Zhang, F. Yu, A. J. Cole, B. Chertok, A. E. David, J. Wang, and V. C. Yang, APPS J. 11, 693 (2009).
27.H. Zhang, G. Shan, H. Liu, and J. Xing, Surf. Coat. Technol. 201, 6917 (2007).

Data & Media loading...


Article metrics loading...



Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd