Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. Moulton and M. J. Zaworotko, Chem. Rev. 101, 1629 (2001).
2.O. M. Yaghi, M. O’keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature 423, 705 (2003).
3.S. Kitagawa, R. Kitaura, and S. Noro, Angew. Chem., Int. Ed. 43, 2334 (2004).
4.A. K. Cheetham, C. N. R. Rao, and R. K. Feller, Chem. Commun. 4780 (2006).
5.S. C. Sahoo, T. Kundu, and R. Banerjee, J. Am. Chem. Soc. 133, 17950 (2011).
6.T. Yamada, K. Otsubo, R. Makiura, and H. Kitagawa, Chem. Soc. Rev. 42, 6655 (2013).
7.S. Horike, D. Umeyama, and S. Kitagawa, Acc. Chem. Res. 46, 2376 (2013).
8.G. K. H. Shimizu, J. M. Taylor, and S. Kim, Science 341, 354 (2013).
9.K. D. Kreuer, I. Stoll, and A. Rabenau, Solid State Ionics 9–10, 1061 (1983).
10.R. Hinrichs, G. Tomandl, and J. A. H. da Jornada, Solid State Ionics 77, 257 (1995).
11.Q. L. Chen, A. Braun, A. Ovalle, C. D. Savaniu, T. Graule, and N. Bagdassarov, Appl. Phys. Lett. 97, 041902 (2010).
12.V. V. Sinitsyn, E. G. Ponyatovskii, A. I. Baranov, A. V. Tregubchenko, L. A. Shuvalov, and J. G. Adashko, Sov. Phys.-JETP 73, 386 (1991).
13.T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G. Bithell, J.-C. Tan, and A. K. Cheetham, Phys. Rev. Lett. 104, 115503 (2010).
14.J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T. D. Bennett, C. Mellot-Draznieks, C. M. Zicovich-Wilson, and A. K. Cheetham, Phys. Rev. Lett. 108, 095502 (2012).
15.S. Horike, D. Umeyama, M. Inukai, T. Itakura, and S. Kitagawa, J. Am. Chem. Soc. 134, 7612 (2012).
16.See supplementary material at for high-pressure cell assemblies used for impedance measurement and synchrotron X-ray study, and PXRD of 1 measured before and after 7 GPa pressing with the DIA-type cubic-anvil high-pressure apparatus.[Supplementary Material]
17.V. E. Bean, S. Akimoto, P. M. Bell, S. Block, W. B. Holzapfel, M. H. Manghnani, M. F. Nicol, and S. M. Stishov, Physica B+C 139–140, 52 (1986).
18.W. Utsumi, K. Funakoshi, S. Urakawa, M. Yamakata, K. Tsuji, H. Konishi, and O. Shimomura, Rev. High Pressure Sci. Technol. 7, 1484 (1998).
19.O. L. Anderson, D. G. Isaak, and S. Yamamoto, J. Appl. Phys. 65, 1534 (1989).
20.Although we could not confirm the reversibility in situ (i.e., the Bragg peaks of 1 was not observed again after the pressure was released), we relied on the results shown in Figs. 2(b) and S2 to conclude that the crystalline-to-amorphous transition of 1 is essentially reversible. We are not certain why the reversibility was not observed in the in situ X-ray measurements; however, plausible reasons include the pressure-hysteresis effect. Alternatively, the effect may become irreversible at pressures over a certain pressure (e.g., at pressures over 7 GPa), as is the case reported in Ref. 28.
21.J. M. Le Meins, O. Bohnke, and G. Courbion, Solid State Ionics 111, 67 (1998).
22.M. Tatsumisago and A. Hayashi, Solid State Ionics 225, 342 (2012).
23.Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, and P. G. Bruce, Nature 412, 520 (2001).
24.N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, Nat. Mater. 10, 682 (2011).
25.K. D. Kreuer, Chem. Mater. 8, 610 (1996).
26.X. Guo and T. Yoshino, Geophys. Res. Lett. 41, 2013GL058627 (2014).
27.M. Guthrie, R. Boehler, C. A. Tulk, J. J. Molaison, A. M. Dos Santos, K. Li, and R. J. Hemley, Proc. Natl. Acad. Sci. U. S. A. 110, 10552 (2013).
28.M. Ohba, W. Kaneko, S. Kitagawa, T. Maeda, and M. Mito, J. Am. Chem. Soc. 130, 4475 (2008).
29.T. D. Bennett and A. K. Cheetham, Acc. Chem. Res. 47, 1555 (2014).
30.O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393 (1984).
31.R. J. Hemley, A. P. Jephcoat, H. K. Mao, L. C. Ming, and M. H. Manghnani, Nature 334, 52 (1988).
32.Y. Fujii, M. Kowaka, and A. Onodera, J. Phys. C: Solid State 18, 789 (1985).
33.M. B. Kruger and R. Jeanloz, Science 249, 647 (1990).

Data & Media loading...


Article metrics loading...



The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of the coupling of the mechanical and electrical properties of a CP.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd