Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/12/10.1063/1.4899295
1.
1.O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature 423, 705 (2003).
http://dx.doi.org/10.1038/nature01650
2.
2.S. Kitagawa, R. Kitaura, and S. Noro, Angew. Chem., Int. Ed. 43, 2334 (2004).
http://dx.doi.org/10.1002/anie.200300610
3.
3.G. Ferey, Chem. Soc. Rev. 37, 191 (2008).
http://dx.doi.org/10.1039/b618320b
4.
4.L. J. Murray, M. Dinca, and J. R. Long, Chem. Soc. Rev. 38, 1294 (2009).
http://dx.doi.org/10.1039/b802256a
5.
5.M. Kurmoo, Chem. Soc. Rev. 38, 1353 (2009).
http://dx.doi.org/10.1039/b804757j
6.
6.J. C. Tana and A. K. Cheetham, Chem. Soc. Rev. 40, 1059 (2011).
http://dx.doi.org/10.1039/c0cs00163e
7.
7.D.-F. Weng, Z.-M. Wang, and S. Gao, Chem. Soc. Rev. 40, 3157 (2011).
http://dx.doi.org/10.1039/c0cs00093k
8.
8.J.-R. Li, J. Sculley, and H.-C. Zhou, Chem. Rev. 112, 869 (2012).
http://dx.doi.org/10.1021/cr200190s
9.
9.T. Yamada, K. Otsubo, R. Makiura, and H. Kitagawa, Chem. Soc. Rev. 42, 6655 (2013).
http://dx.doi.org/10.1039/c3cs60028a
10.
10.H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, Science 341, 974 (2013).
http://dx.doi.org/10.1126/science.1230444
11.
11.S. Furukawa, J. Reboul, S. Diring, K. Sumida, and S. Kitagawa, Chem. Soc. Rev. 43, 5700 (2014).
http://dx.doi.org/10.1039/C4CS00106K
12.
12.O. Shekhah, J. Liu, R. A. Fischer, and C. Wöll, Chem. Soc. Rev. 40, 1081 (2011).
http://dx.doi.org/10.1039/c0cs00147c
13.
13.D. Zacher, R. Schmid, C. Wöll, and R. A. Fischer, Angew. Chem., Int. Ed. 50, 176 (2011).
http://dx.doi.org/10.1002/anie.201002451
14.
14.A. Bétard and R. A. Fischer, Chem. Rev. 112, 1055 (2012).
http://dx.doi.org/10.1021/cr200167v
15.
15.M. Tu, S. Wannapaiboon, and R. A. Fischer, Inorg. Chem. Front. 1, 442 (2014).
http://dx.doi.org/10.1039/c4qi00037d
16.
16.M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, and H.-K. Jeong, Ind. Eng. Chem. Res. 51, 2179 (2012).
http://dx.doi.org/10.1021/ie202038m
17.
17.S. Hermes, F. Schröder, R. Chelmowski, C. Wöll, and R. A. Fischer, J. Am. Chem. Soc. 127, 13744 (2005).
http://dx.doi.org/10.1021/ja053523l
18.
18.S. Hermes, D. Zacher, A. Baunemann, C. Wöll, and R. A. Fischer, Chem. Mater. 19, 2168 (2007).
http://dx.doi.org/10.1021/cm062854+
19.
19.D. Zacher, A. Baunemann, S. Hermes, and R. A. Fischer, J. Mater. Chem. 17, 2785 (2007).
http://dx.doi.org/10.1039/b703098c
20.
20.E. Biemmi, C. Scherb, and T. Bein, J. Am. Chem. Soc. 129, 8054 (2007).
http://dx.doi.org/10.1021/ja0701208
21.
21.G. Lu and J. T. Hupp, J. Am. Chem. Soc. 132, 7832 (2010).
http://dx.doi.org/10.1021/ja101415b
22.
22.H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, and J. Caro, J. Am. Chem. Soc. 131, 16000 (2009).
http://dx.doi.org/10.1021/ja907359t
23.
23.Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, and Y. M. Lee, Chem. Commun. 2010, 737
http://dx.doi.org/10.1039/c0cc03927f
24.
24.J. Gascon, S. Aguado, and F. Kapteijn, Microporous Mesoporous Mater. 113, 132 (2008).
http://dx.doi.org/10.1016/j.micromeso.2007.11.014
25.
25.C. Scherb, A. Schödel, and T. Bein, Angew. Chem., Int. Ed. 47, 5777 (2008).
http://dx.doi.org/10.1002/anie.200704034
26.
26.X. Zou, G. Zhu, I. J. Hewitt, F. Sun, and S. Qiu, Dalton Trans. 2009, 3009 .
http://dx.doi.org/10.1039/b822248g
27.
27.O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, and C. Wöll, J. Am. Chem. Soc. 129, 15118 (2007).
http://dx.doi.org/10.1021/ja076210u
28.
28.C. Munuera, O. Shekhah, H. Wang, C. Wöll, and C. Ocal, Phys. Chem. Chem. Phys. 10, 7257 (2008).
http://dx.doi.org/10.1039/b811010g
29.
29.K. Kanaizuka, R. Haruki, O. Sakata, M. Yoshimoto, Y. Akita, and H. Kitagawa, J. Am. Chem. Soc. 130, 15778 (2008).
http://dx.doi.org/10.1021/ja806799t
30.
30.O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schüpbach, A. Terfort, D. Zacher, R. A. Fischer, and C. Wöll, Nat. Mater. 8, 481 (2009).
http://dx.doi.org/10.1038/nmat2445
31.
31.O. Shekhah, H. Wang, D. Zacher, R. A. Fischer, and C. Wöll, Angew. Chem., Int. Ed. 48, 5038 (2009).
http://dx.doi.org/10.1002/anie.200900378
32.
32.F. Hinterholzinger, C. Scherb, T. Ahnfeldt, N. Stock, and T. Bein, Phys. Chem. Chem. Phys. 12, 4514 (2010).
http://dx.doi.org/10.1039/b924657f
33.
33.O. Zybaylo, O. Shekhah, H. Wang, M. Tafipolsky, R. Schmid, D. Johannsmann, and C. Wöll, Phys. Chem. Chem. Phys. 12, 8092 (2010).
http://dx.doi.org/10.1039/b927601g
34.
34.D. Zacher, K. Yusenko, A. Bétard, S. Henke, M. Molon, T. Ladnorg, O. Shekhah, B. Schüpbach, T. de los Arcos, M. Krasnopolski, M. Meilikhov, J. Winter, A. Terfort, C. Wöll, and R. A. Fischer, Chem.- Eur. J. 17, 1448 (2011).
http://dx.doi.org/10.1002/chem.201002381
35.
35.H. K. Arslan, O. Shekhah, D. C. F. Wieland, M. Paulus, C. Sternemann, M. A. Schroer, S. Tiemeyer, M. Tolan, R. A. Fischer, and C. Wöll, J. Am. Chem. Soc. 133, 8158 (2011).
http://dx.doi.org/10.1021/ja2037996
36.
36.O. Shekhah, K. Hirai, H. Wang, H. Uehara, M. Kondo, S. Diring, D. Zacher, R. A. Fischer, O. Sakata, S. Kitagawa, S. Furukawa, and C. Wöll, Dalton Trans. 40, 4954 (2011).
http://dx.doi.org/10.1039/c0dt01818j
37.
37.B. Liu, M. Ma, D. Zacher, A. Bétard, K. Yusenko, N. Metzler-Nolte, C. Wöll, and R. A. Fischer, J. Am. Chem. Soc. 133, 1734 (2011).
http://dx.doi.org/10.1021/ja1109826
38.
38.B. Liu, O. Shekhah, H. K. Arslan, J. Liu, C. Wöll, and R. A. Fischer, Angew. Chem., Int. Ed. 51, 807 (2012).
http://dx.doi.org/10.1002/anie.201104240
39.
39.K. Otsubo, T. Haraguchi, O. Sakata, A. Fujiwara, and H. Kitagawa, J. Am. Chem. Soc. 134, 9605 (2012).
http://dx.doi.org/10.1021/ja304361v
40.
40.R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, and H. Kitagawa, Nat. Mater. 9, 565 (2010).
http://dx.doi.org/10.1038/nmat2769
41.
41.R. Makiura and H. Kitagawa, Eur. J. Inorg. Chem. 24, 3715 (2010).
http://dx.doi.org/10.1002/ejic.201000730
42.
42.S. Motoyama, R. Makiura, O. Sakata, and H. Kitagawa, J. Am. Chem. Soc. 133, 5640 (2011).
http://dx.doi.org/10.1021/ja110720f
43.
43.R. Makiura and O. Konovalov, Sci. Rep. 3, 2506 (2013).
http://dx.doi.org/10.1038/srep02506
44.
44.R. Makiura and O. Konovalov, Dalton Trans. 42, 15931 (2013).
http://dx.doi.org/10.1039/c3dt51703a
45.
45.G. Xu, T. Yamada, K. Otsubo, S. Sakaida, and H. Kitagawa, J. Am. Chem. Soc. 134, 16524 (2012).
http://dx.doi.org/10.1021/ja307953m
46.
46.G. Xu, K. Otsubo, T. Yamada, S. Sakaida, and H. Kitagawa, J. Am. Chem. Soc. 135, 7438 (2013).
http://dx.doi.org/10.1021/ja402727d
47.
47.O. Sakata, Surf. Rev. Lett. 10, 543 (2003).
http://dx.doi.org/10.1142/S0218625X03004809
48.
48.V. Niel, J. M. Martínez-Agudo, M. C. Muñoz, A. B. Gaspar, and J. A. Real, Inorg. Chem. 40, 3838 (2001).
http://dx.doi.org/10.1021/ic010259y
49.
49.M. Ohba, K. Yoneda, G. Agustí, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, and S. Kitagawa, Angew. Chem., Int. Ed. 48, 4767 (2009).
http://dx.doi.org/10.1002/anie.200806039
50.
50.S. Cobo, G. Molnár, J. A. Real, and A. Bousseksou, Angew. Chem., Int. Ed. 45, 5786 (2006).
http://dx.doi.org/10.1002/anie.200601885
51.
51.G. Molnár, S. Cobo, J. A. Real, F. Carcenac, E. Daran, C. Vieu, and A. Bousseksou, Adv. Mater. 19, 2163 (2007).
http://dx.doi.org/10.1002/adma.200700448
52.
52.T. Yamada, M. Sadakiyo, and H. Kitagawa, J. Am. Chem. Soc. 131, 3144 (2009).
http://dx.doi.org/10.1021/ja808681m
53.
53.M. Sadakiyo, T. Yamada, and H. Kitagawa, J. Am. Chem. Soc. 131, 9906 (2009).
http://dx.doi.org/10.1021/ja9040016
54.
54.V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova, and V. P. Fedin, J. Am. Chem. Soc. 134, 15640 (2012).
http://dx.doi.org/10.1021/ja305587n
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/12/10.1063/1.4899295
Loading
/content/aip/journal/aplmater/2/12/10.1063/1.4899295
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/12/10.1063/1.4899295
2014-10-24
2016-12-03

Abstract

Metal–organic frameworks (MOFs) have attracted the attention of a variety of researchers because of their structural diversity and designability, and their varied physical properties based on their uniform microporosity. While MOFs are interesting as bulk materials, future applications in functional nanomaterials will require the use of MOFs as thin films, and to achieve this, several thin-film fabrication techniques have been developed. These techniques have provided rational design of a variety of MOF thin films; however, oriented crystal growth of a MOF thin film, which is mainly confirmed by X-ray diffraction, remains a challenge that should be addressed. In this article, we review thin-film fabrications and characterizations, and structural features of MOF thin films with perfect crystalline orientation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/12/1.4899295.html;jsessionid=PfwROzic4D5a11bYfdK2CUB2.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/12/10.1063/1.4899295&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/12/10.1063/1.4899295&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4899295'
Top,Right1,Right2,Right3,