Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/12/10.1063/1.4901751
1.
1.S. Evers and L. F. Nazar, Acc. Chem. Res. 46(5), 1135 (2012);
http://dx.doi.org/10.1021/ar3001348
1.P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, Nat. Mater. 11(1), 19 (2012);
http://dx.doi.org/10.1038/nmat3191
1.Y. Yang, G. Y. Zheng, and Y. Cui, Chem. Soc. Rev. 42(7), 3018 (2013);
http://dx.doi.org/10.1039/c2cs35256g
1.A. Manthiram, Y. Fu, and Y.-S. Su, Acc. Chem. Res. 46(5), 1125 (2013);
http://dx.doi.org/10.1021/ar300179v
1.R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, and S. B. Brummer, J. Electrochem. Soc. 126(4), 523 (1979).
http://dx.doi.org/10.1149/1.2129079
2.
2.K. E. Aifantis, S. A. Hackney, and R. V. Kumar, High Energy Density Lithium Batteries: Materials, Engineering, Applications (John Wiley & Sons, 2010).
3.
3.J. Shim, K. A. Striebel, and E. J. Cairns, J. Electrochem. Soc. 149(10), A1321 (2002).
http://dx.doi.org/10.1149/1.1503076
4.
4.X. Ji, K. T. Lee, and L. F. Nazar, Nat. Mater. 8(6), 500 (2009);
http://dx.doi.org/10.1038/nmat2460
4.M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie, H.-J. Peng, and F. Wei, Nat. Commun. 5, 3410 (2014);
http://dx.doi.org/10.1038/ncomms4410
4.C. Zhang, H. B. Wu, C. Yuan, Z. Guo, and X. W. Lou, Angew. Chem., Int. Ed. 51(38), 9592 (2012).
http://dx.doi.org/10.1002/anie.201205292
5.
5.H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, and H. J. Dai, Nano Lett. 11(7), 2644 (2011).
http://dx.doi.org/10.1021/nl200658a
6.
6.B. Zhang, X. Qin, G. R. Li, and X. P. Gao, Energy Environ. Sci. 3(10), 1531 (2010).
http://dx.doi.org/10.1039/c002639e
7.
7.K. Xi, S. Cao, X. Peng, C. Ducati, R. V. Kumar, and A. K. Cheetham, Chem. Commun. 49(22), 2192 (2013).
http://dx.doi.org/10.1039/c3cc38009b
8.
8.S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, and L.-J. Wan, J. Am. Chem. Soc. 134(45), 18510 (2012).
http://dx.doi.org/10.1021/ja308170k
9.
9.C. N. R. Rao, A. K. Cheetham, and A. Thirumurugan, J. Phys.: Condens. Matter 20(8), 083202 (2008).
http://dx.doi.org/10.1088/0953-8984/20/8/083202
10.
10.S. J. Yang, T. Kim, J. H. Im, Y. S. Kim, K. Lee, H. Jung, and C. R. Park, Chem. Mater. 24(3), 464 (2012);
http://dx.doi.org/10.1021/cm202554j
10.S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D. N. Dybtsev, and K. Kim, Chem. Commun. 48(60), 7447 (2012);
http://dx.doi.org/10.1039/c2cc33439a
10.P. Su, L. Jiang, J. Zhao, J. Yan, C. Li, and Q. Yang, Chem. Commun. 48(70), 8769 (2012).
http://dx.doi.org/10.1039/c2cc34234k
11.
11.K. Xi, P. R. Kidambi, R. Chen, C. Gao, X. Peng, C. Ducati, S. Hofmann, and R. V. Kumar, Nanoscale 6(11), 5746 (2014).
http://dx.doi.org/10.1039/C4NR00326H
12.
12.R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, and K. Amine, Nano Lett. 13(10), 4642 (2013);
http://dx.doi.org/10.1021/nl4016683
12.L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, and Y. G. Zhang, J. Am. Chem. Soc. 133(46), 18522 (2011).
http://dx.doi.org/10.1021/ja206955k
13.
13.S. Lu, Y. Cheng, X. Wu, and J. Liu, Nano Lett. 13(6), 2485 (2013);
http://dx.doi.org/10.1021/nl400543y
13.G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, and H.-M. Cheng, ACS Nano 7(6), 5367 (2013);
http://dx.doi.org/10.1021/nn401228t
13.T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu, F. Huang, X. Xie, and M. Jiang, Energy Environ. Sci. 6(4), 1283 (2013);
http://dx.doi.org/10.1039/c3ee24324a
13.S. Evers and L. F. Nazar, Chem. Commun. 48(9), 1233 (2012).
http://dx.doi.org/10.1039/c2cc16726c
14.
14.H. Sun, G.-L. Xu, Y.-F. Xu, S.-G. Sun, X. Zhang, Y. Qiu, and S. Yang, Nano Res. 5(10), 726 (2012).
http://dx.doi.org/10.1007/s12274-012-0257-7
15.
15.C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, and F. Wei, Adv. Mater. 26(35), 6100 (2014).
http://dx.doi.org/10.1002/adma.201401243
16.
16.D. Fairen-Jimenez, R. Galvelis, A. Torrisi, A. D. Gellan, M. T. Wharmby, P. A. Wright, C. Mellot-Draznieks, and T. Duren, Dalton Trans. 41(35), 10752 (2012);
http://dx.doi.org/10.1039/c2dt30774j
16.D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, and T. Düren, J. Am. Chem. Soc. 133(23), 8900 (2011).
http://dx.doi.org/10.1021/ja202154j
17.
17.D. Fairén-Jiménez, F. Carrasco-Marín, D. Djurado, F. Bley, F. Ehrburger-Dolle, and C. Moreno-Castilla, J. Phys. Chem. B 110(17), 8681 (2006).
http://dx.doi.org/10.1021/jp055992f
18.
18.A. T. Ward, J. Phys. Chem. 72(12), 4133 (1968).
http://dx.doi.org/10.1021/j100858a031
19.
19.A. C. Ferrari, Solid State Commun. 143(1–2), 47 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.03.052
20.
20.P. I. Ravikovitch, G. L. Haller, and A. V. Neimark, Adv. Colloid Interface Sci. 76–77(0), 203 (1998).
http://dx.doi.org/10.1016/S0001-8686(98)00047-5
21.
21.Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, Carbon 69(0), 467 (2014);
http://dx.doi.org/10.1016/j.carbon.2013.12.050
21.S. Y. Liu, J. Xie, Q. Pan, C. Y. Wu, G. S. Cao, T. J. Z. And, and X. B. Zhao, Int. J. Electrochem. Sci. 7(1), 354 (2012);
21.K. Spyrou, L. Kang, E. K. Diamanti, R. Y. Gengler, D. Gournis, M. Prato, and P. Rudolf, Carbon 61(0), 313 (2013);
http://dx.doi.org/10.1016/j.carbon.2013.05.010
21.P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, Nano Res. 3(11), 794 (2010).
http://dx.doi.org/10.1007/s12274-010-0046-0
22.
22.Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, ACS Nano 5(11), 9187 (2011);
http://dx.doi.org/10.1021/nn203436j
22.D. Briggs, Surf. Interface Anal. 3(4), v (1981);
http://dx.doi.org/10.1002/sia.740030412
22.F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, and R. Chen, ChemSusChem 6(8), 1438 (2013).
http://dx.doi.org/10.1002/cssc.201300260
23.
23.D.-W. Wang, G. Zhou, F. Li, K.-H. Wu, G. Q. Lu, H.-M. Cheng, and I. R. Gentle, Phys. Chem. Chem. Phys. 14(24), 8703 (2012).
http://dx.doi.org/10.1039/c2cp40808b
24.
24.See the supplementary material at http://dx.doi.org/10.1063/1.4901751 for details on the sample preparation and characterization, as well as some additional TEM image, XRD pattern, N2 adsorption-desorption isotherms, the pore size distribution, textural characteristics, and percentage composition (by weight) of the elements.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/12/10.1063/1.4901751
Loading
/content/aip/journal/aplmater/2/12/10.1063/1.4901751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/12/10.1063/1.4901751
2014-12-16
2016-09-01

Abstract

A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C sample, Li-S batteries with the GS-S/C composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/12/1.4901751.html;jsessionid=FExvIGlty3gdcCp6qLEEN5SC.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/12/10.1063/1.4901751&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/12/10.1063/1.4901751&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4901751'
Right1,Right2,Right3,