Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Evers and L. F. Nazar, Acc. Chem. Res. 46(5), 1135 (2012);
1.P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, Nat. Mater. 11(1), 19 (2012);
1.Y. Yang, G. Y. Zheng, and Y. Cui, Chem. Soc. Rev. 42(7), 3018 (2013);
1.A. Manthiram, Y. Fu, and Y.-S. Su, Acc. Chem. Res. 46(5), 1125 (2013);
1.R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, and S. B. Brummer, J. Electrochem. Soc. 126(4), 523 (1979).
2.K. E. Aifantis, S. A. Hackney, and R. V. Kumar, High Energy Density Lithium Batteries: Materials, Engineering, Applications (John Wiley & Sons, 2010).
3.J. Shim, K. A. Striebel, and E. J. Cairns, J. Electrochem. Soc. 149(10), A1321 (2002).
4.X. Ji, K. T. Lee, and L. F. Nazar, Nat. Mater. 8(6), 500 (2009);
4.M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie, H.-J. Peng, and F. Wei, Nat. Commun. 5, 3410 (2014);
4.C. Zhang, H. B. Wu, C. Yuan, Z. Guo, and X. W. Lou, Angew. Chem., Int. Ed. 51(38), 9592 (2012).
5.H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, and H. J. Dai, Nano Lett. 11(7), 2644 (2011).
6.B. Zhang, X. Qin, G. R. Li, and X. P. Gao, Energy Environ. Sci. 3(10), 1531 (2010).
7.K. Xi, S. Cao, X. Peng, C. Ducati, R. V. Kumar, and A. K. Cheetham, Chem. Commun. 49(22), 2192 (2013).
8.S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, and L.-J. Wan, J. Am. Chem. Soc. 134(45), 18510 (2012).
9.C. N. R. Rao, A. K. Cheetham, and A. Thirumurugan, J. Phys.: Condens. Matter 20(8), 083202 (2008).
10.S. J. Yang, T. Kim, J. H. Im, Y. S. Kim, K. Lee, H. Jung, and C. R. Park, Chem. Mater. 24(3), 464 (2012);
10.S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D. N. Dybtsev, and K. Kim, Chem. Commun. 48(60), 7447 (2012);
10.P. Su, L. Jiang, J. Zhao, J. Yan, C. Li, and Q. Yang, Chem. Commun. 48(70), 8769 (2012).
11.K. Xi, P. R. Kidambi, R. Chen, C. Gao, X. Peng, C. Ducati, S. Hofmann, and R. V. Kumar, Nanoscale 6(11), 5746 (2014).
12.R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, and K. Amine, Nano Lett. 13(10), 4642 (2013);
12.L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, and Y. G. Zhang, J. Am. Chem. Soc. 133(46), 18522 (2011).
13.S. Lu, Y. Cheng, X. Wu, and J. Liu, Nano Lett. 13(6), 2485 (2013);
13.G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, and H.-M. Cheng, ACS Nano 7(6), 5367 (2013);
13.T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu, F. Huang, X. Xie, and M. Jiang, Energy Environ. Sci. 6(4), 1283 (2013);
13.S. Evers and L. F. Nazar, Chem. Commun. 48(9), 1233 (2012).
14.H. Sun, G.-L. Xu, Y.-F. Xu, S.-G. Sun, X. Zhang, Y. Qiu, and S. Yang, Nano Res. 5(10), 726 (2012).
15.C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, and F. Wei, Adv. Mater. 26(35), 6100 (2014).
16.D. Fairen-Jimenez, R. Galvelis, A. Torrisi, A. D. Gellan, M. T. Wharmby, P. A. Wright, C. Mellot-Draznieks, and T. Duren, Dalton Trans. 41(35), 10752 (2012);
16.D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, and T. Düren, J. Am. Chem. Soc. 133(23), 8900 (2011).
17.D. Fairén-Jiménez, F. Carrasco-Marín, D. Djurado, F. Bley, F. Ehrburger-Dolle, and C. Moreno-Castilla, J. Phys. Chem. B 110(17), 8681 (2006).
18.A. T. Ward, J. Phys. Chem. 72(12), 4133 (1968).
19.A. C. Ferrari, Solid State Commun. 143(1–2), 47 (2007).
20.P. I. Ravikovitch, G. L. Haller, and A. V. Neimark, Adv. Colloid Interface Sci. 76–77(0), 203 (1998).
21.Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, Carbon 69(0), 467 (2014);
21.S. Y. Liu, J. Xie, Q. Pan, C. Y. Wu, G. S. Cao, T. J. Z. And, and X. B. Zhao, Int. J. Electrochem. Sci. 7(1), 354 (2012);
21.K. Spyrou, L. Kang, E. K. Diamanti, R. Y. Gengler, D. Gournis, M. Prato, and P. Rudolf, Carbon 61(0), 313 (2013);
21.P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, Nano Res. 3(11), 794 (2010).
22.Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, ACS Nano 5(11), 9187 (2011);
22.D. Briggs, Surf. Interface Anal. 3(4), v (1981);
22.F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, and R. Chen, ChemSusChem 6(8), 1438 (2013).
23.D.-W. Wang, G. Zhou, F. Li, K.-H. Wu, G. Q. Lu, H.-M. Cheng, and I. R. Gentle, Phys. Chem. Chem. Phys. 14(24), 8703 (2012).
24.See the supplementary material at for details on the sample preparation and characterization, as well as some additional TEM image, XRD pattern, N2 adsorption-desorption isotherms, the pore size distribution, textural characteristics, and percentage composition (by weight) of the elements.[Supplementary Material]

Data & Media loading...


Article metrics loading...



A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C sample, Li-S batteries with the GS-S/C composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd