Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
2.D. Loss and D. P. DiVincenzo, Phys. Rev. A: At., Mol., Opt. Phys. 57, 120 (1998).
3.S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 081309(R) (2002).
4.S. Wiesner, ACM SIGACT News 15, 78 (1983).
5.M. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, Nano Lett. 14, 982 (2014).
6.I. A. Ostapenko, G. Honig, C. Kindel, S. Rodt, A. Strittmatter, A. Hoffmann, and D. Bimberg, Appl. Phys. Lett. 97, 063103 (2010).
7.A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, J. Appl. Phys. 100, 023522 (2006).
8.T. Zhu, F. Oehler, B. P. L. Reid, R. M. Emery, R. A. Taylor, M. J. Kappers, and R. A. Oliver, Appl. Phys. Lett. 102, 251905 (2013).
9.R. A. Oliver, A. Jarjour, R. A. Taylor, A. Tahraoui, Y. Zhang, M. J. Kappers, and C. J. Humphreys, Mater. Sci. Eng. B 147, 108 (2008).
10.B. P. L. Reid, T. Zhu, C. C. S. Chan, C. Kocher, F. Oehler, R. Emery, M. J. Kappers, R. A. Oliver, and R. A. Taylor, Phys. Status Solidi C 11, 702 (2014).
11.B. P. L. Reid, C. Kocher, T. Zhu, F. Oehler, R. M. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, Appl. Phys. Lett. 104, 263108 (2014).
12.C. F. Johnston, M. J. Kappers, M. A. Moram, J. L. Hollander, and C. J. Humphreys, J. Cryst. Growth 311, 3295 (2009).
13.R. Hao, M. J. Kappers, M. A. Moram, and C. J. Humphreys, J. Cryst. Growth 337, 81 (2011).
14.B. P. L. Reid, T. Zhu, T. J. Puchtler, L. J. Fletcher, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, Jpn. J. Appl. Phys., Part 1 52, 08JE01 (2013).
15.R. A. Oliver, G. Andrew, D. Briggs, M. J. Kappers, C. J. Humphreys, S. Yasin, J. Rice, J. Smith, and R. A. Taylor, Appl. Phys. Lett. 83, 755 (2003).

Data & Media loading...


Article metrics loading...



Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 eV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd