Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/12/10.1063/1.4904069
1.
1.(a)Q.-L. Zhua and Q. Xu, “Themed issue: Metal–organic frameworks,” Chem. Soc. Rev. 43(16), 5468 (2014);
http://dx.doi.org/10.1039/C3CS60472A
1.(b)G. Férey, “Hybrid porous solids: Past present future,” Chem. Soc. Rev. 37, 191 (2008).
http://dx.doi.org/10.1039/b618320b
2.
2.J. Sculley, D. Yuan, and H.-C. Zhou, “The current status of hydrogen storage in metal–organic frameworks—Updated,” Energy Environ. Sci. 4, 2721 (2011).
http://dx.doi.org/10.1039/c1ee01240a
3.
3.K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and J. R. Long, “Carbon dioxide capture in metal–organic frameworks,” Chem. Rev. 112(2), 724 (2012).
http://dx.doi.org/10.1021/cr2003272
4.
4.J.-R. Li, R. J. Kuppler, and H.-C. Zhou, “Selective gas adsorption and separation in metal–organic frameworks,” Chem. Soc. Rev. 38, 1477 (2009).
http://dx.doi.org/10.1039/b802426j
5.
5.P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, and C. Serre, “Metal–organic frameworks in biomedicine,” Chem. Rev. 112, 1232 (2010).
http://dx.doi.org/10.1021/cr200256v
6.
6.V. Agostoni, T. Chalati, P. Horcajada, H. Willaime, R. H. Anand, T. Baati, S. Hall, G. Maurin, H. Chacun, K. Buchemal, C. Martineau, F. Taulelle, P. Couvreur, C. Roger-Kreuz, P. Clayette, S. Monti, C. Serre, and R. Gref, Adv. Healthcare Mater. 2(12), 16301637 (2013);
http://dx.doi.org/10.1002/adhm.201200454
6.P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, E. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9, 172 (2010);
http://dx.doi.org/10.1038/nmat2608
6.R. Ananthoji, J. F. Eubank, F. Nouar, H. Mouttaki, M. Eddaoudi, and J. P. Harmon, “Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release,” J. Mater. Chem. 21, 9587 (2011);
http://dx.doi.org/10.1039/c1jm11075f
6.M. L. K. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, and W. Lin, “Post-synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery,” J. Am. Chem. Soc. 131(40), 14261 (2009).
http://dx.doi.org/10.1021/ja906198y
7.
7.(a)A. C. Mckinlay, J. F. Eubank, S. Wuttke, B. Xiao, P. S. Wheatley, P. Bazin, J.-C. Lavalley, M. Daturi, A. Vimont, G. De Weireld, P. Horcajada, C. Serre, and R. E. Morris, “Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal–organic frameworks,” Chem. Mater. 25(9), 1592 (2013);
http://dx.doi.org/10.1021/cm304037x
7.(b)N. J. Hinks, A. C. Mckinlay, B. Xiao, P. S. Wheatley, and R. E. Morris, “Metal organic frameworks as NO delivery materials for biological applications,” Microporous Mesoporous Mater. 129(3), 330 (2010);
http://dx.doi.org/10.1016/j.micromeso.2009.04.031
7.(c)A. C. Mckinlay, B. Xiao, D. S. Wragg, P. S. Wheatley, I. L. Megson, and R. E. Morris, “Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks,” J. Am. Chem. Soc. 130(31), 10440 (2008);
http://dx.doi.org/10.1021/ja801997r
7.(d)P. K. Allan, P. S. Wheatley, D. Aldous, M. I. Mohideen, C. Tang, J. A. Hriljac, I. L. Megson, K. W. Chapman, G. de Weireld, S. Vaesen, and R. E. Morris, “Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide,” Dalton Trans. 41(14), 4060 (2012).
http://dx.doi.org/10.1039/c2dt12069k
8.
8.T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi, R. Gref, M. F. Najjar, A. Zakhama, P. Couvreur, C. Serre, and P. Horcajada, “In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal–organic frameworks,” Chem. Sci. 4, 1597 (2013);
http://dx.doi.org/10.1039/c3sc22116d
8.C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M. J. Blanco-Prieto, and P. Horcajada, “Cytotoxicity of nanoscaled metal-organic frameworks,” J. Mater. Chem. B 2, 262271 (2014).
http://dx.doi.org/10.1039/c3tb20832j
9.
9.(a)I. Imaz, M. Rubio-Martinez, J. An, I. Sole-Font, N. L. Rosi, and D. Maspoch, “Metal–biomolecule frameworks (MBioFs),” Chem. Commun. 47, 7287 (2011);
http://dx.doi.org/10.1039/c1cc11202c
9.(b)J. Rabone, Y.-F. Yue, S. Y. Chong, K. C. Stylianou, J. Bacsa, D. Bradshaw, G. R. Darling, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge, and M. J. Rosseinsky, “An adaptable peptide-based porous material,” Science 329, 1053 (2010);
http://dx.doi.org/10.1126/science.1190672
9.(c)R. Anedda, D. V. Soldatov, I. L. Moudrakovski, M. Casu, and J. A. Ripmeester, “A new approach to characterizing sorption in materials with flexible micropores,” Chem. Mater. 20, 2908 (2008);
http://dx.doi.org/10.1021/cm8001805
9.(d)H. Y. Lee, J. W. Kampf, K. S. Park, and E. N. G. Marsh, “Covalent metal–peptide framework compounds that extend in one and two dimensions,” Cryst. Growth Des. 8, 296 (2008);
http://dx.doi.org/10.1021/cg700724h
9.(e)M. Tiliakos, E. Katsoulakou, A. Terzis, C. Raptopoulou, P. Cordopatis, and E. Manessi-Zoupa, “The dipeptide H-Aib-l-Ala-OH ligand in copper(II) chemistry: Variation of product identity as a function of pH,” Inorg. Chem. Commun. 8, 1085 (2005);
http://dx.doi.org/10.1016/j.inoche.2005.09.008
9.(f)C. Serre, F. Millange, S. Surblé, and G. Férey, “A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units,” Angew. Chem., Int. Ed. 43(46), 6285 (2004).
http://dx.doi.org/10.1002/anie.200454250
10.
10.(a)S. R. Miller, E. Alvarez, L. Fradcourt, T. Devic, S. Wuttke, P. S. Wheatley, N. Steunou, C. Bonhomme, C. Gervais, D. Laurencin, R. E. Morris, A. Vimont, M. Daturi, P. Horcajada, and C. Serre, “A rare example of a porous Ca-MOF for the controlled release of biologically active NO,” Chem. Commun. 49, 7773 (2013);
http://dx.doi.org/10.1039/c3cc41987h
10.(b)S. R. Miller, P. Horcajada, and C. Serre, “Small chemical causes drastic structural effects: The case of calcium glutarate,” CrystEngComm 13, 1894 (2011);
http://dx.doi.org/10.1039/c0ce00450b
10.(c)S. R. Miller, D. Heurtaux, T. Baati, P. Horcajada, J.-M. Grenèche, and C. Serre, “Biodegradable therapeutic MOFs for the delivery of bioactive molecules,” Chem. Commun. 2010, 4526
http://dx.doi.org/10.1039/c001181a
11.
11.C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Fillinchuk, and G. Férey, “The role of solvent-host interactions that lead to very large swelling of hybrid frameworks,” Science 315, 1828 (2007).
http://dx.doi.org/10.1126/science.1137975
12.
12.(a)S. F. Clark, “Iron deficiency anemia,” Nutr. Clin. Pract. 23, 128 (2008);
http://dx.doi.org/10.1177/0884533608314536
12.(b)A. Besarab and D. W. Coyne, “Iron supplementation to treat anemia in patients with chronic kidney disease,” Nat. Rev. Nephrol. 6, 699 (2010);
http://dx.doi.org/10.1038/nrneph.2010.139
12.(c)J. S. Franzone, M. C. Reboani, U. Mason, and F. Villani, “Synthesis of a new anti-anaemic iron lysozyme glutarate complex and pharmacological studies in animals,” Arzneimittelforschung 40(9), 987 (1990).
13.
13.(a)G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, and I. Margiolaki, “Access to a giant pores hybrid solid (>380 000Å3) by combination of mastered chemistry, simulation and powder diffraction,” Angew. Chem., Int. Ed. 43, 6296 (2004);
http://dx.doi.org/10.1002/anie.200460592
13.(b)P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J. S. Chang, J.-M. Grenèche, I. Margiolaki, and G. Férey, “Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores,” Chem. Commun. 2007, 2820
http://dx.doi.org/10.1039/b704325b
14.
14.D. Cunha, M. B. Yahia, S. Hall, S. R. Miller, H. Chevreau, E. Elkaïm, G. Maurin, P. Horcajada, and C. Serre, “Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks,” Chem. Mater. 25(14), 2767 (2013).
http://dx.doi.org/10.1021/cm400798p
15.
15.Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebke, and M. Eddaoudi, “Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage,” Angew. Chem., Int. Ed. 46, 3278 (2007).
http://dx.doi.org/10.1002/anie.200604306
16.
16.(a)Y.-K. Seo, J. W. Yoon, J. S. Lee, Y. K. Hwang, C. H. Jun, J.-S. Chang, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, S. Bourrelly, P. L. Llewellyn, P. Horcajada, C. Serre, and G. Férey, “Energy-efficient dehumidification over hierachically porous metal–organic frameworks as advanced water adsorbents,” Adv. Mater. 24, 806 (2012);
http://dx.doi.org/10.1002/adma.201104084
16.(b)H. Leclerc, A. Vimont, J. C. Lavalley, M. Daturi, A. D. Wiersum, P. L. Llewellyn, P. Horcajada, G. Férey, and C. Serre, “Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal-organic framework MIL-100,” Phys. Chem. Chem. Phys. 13(24), 11748 (2011).
http://dx.doi.org/10.1039/c1cp20502a
17.
17.(a)M. G. Plaza, A. M. Ribeiro, A. Ferreira, J. C. Santos, Y. K. Hwang, Y.-K. Seo, U.-H. Lee, J.-S. Chang, J. M. Loureiro, and A. E. Rodrigues, “Separation of C3/C4 hydrocarbon mixtures by adsorption using a mesoporous iron MOF: MIL-100(Fe),” Microporous Mesoporous Mater. 153, 178 (2012);
http://dx.doi.org/10.1016/j.micromeso.2011.12.043
17.(b)J. W. Yoon, Y.-K. Seo, Y. K. Hwang, J.-S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P. L. Llewellyn, C. Serre, P. Horcajada, J.-M. Grenèche, A. E. Rodrigues, and G. Férey, “Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption,” Angew. Chem., Int. Ed. 49, 59495952 (2010).
http://dx.doi.org/10.1002/anie.201001230
18.
18.A. Dhakshinamoorthy, M. Alvaro, P. Horcajada, E. Gibson, M. Vishnuvarthan, A. Vimont, J.-M. Grenèche, C. Serre, M. Daturi, and H. Garcia, “Comparison of porous iron trimesates basolite F300 and MIL-100(Fe) as heterogeneous catalysts for Lewis acid and oxidation reactions: Roles of structural defects and stability,” ACS Catal. 2(10), 2060 (2012).
http://dx.doi.org/10.1021/cs300345b
19.
19.R. C. Huxford, J. Della rocca, and W. Lin, “Metal-organic frameworks as potential drug carriers,” Curr. Opin. Chem. Biol. 14(2), 262 (2010).
http://dx.doi.org/10.1016/j.cbpa.2009.12.012
20.
20.S. Wuttke, P. Bazin, A. Vimont, C. Serre, Y. Seo, Y. K. Hwang, J. S. Chang, G. Férey, and M. Daturi, “Discovering the active sites for C3 separation in MIL-100(Fe) by using operando IR spectroscopy,” Chemistry 18(38), 11959 (2012).
http://dx.doi.org/10.1002/chem.201201006
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4904069 for thermal analysis, NO loading, sorption, release, XRPD, and IR data.[Supplementary Material]
22.
22.B. Van de Voorde, M. Boulhout, F. Vermoortele, P. Horcajada, D. Cunha, J. S. Lee, J.-S. Chang, E. Gibson, M. Daturi, J.-C. Lavalley, A. Vimont, I. Beurroies, and D. E. De Vos, “N/S-heterocyclic contaminant removal from fuels by the mesoporous metal–organic framework MIL-100: The role of the metal ion,” J. Am. Chem. Soc. 135(26), 9849 (2013).
http://dx.doi.org/10.1021/ja403571z
23.
23.M. Daturi, J. S. Chang, C. Serre, P. Horcajada-Cortes, G. Férey, A. Vimont, Y. K. Hwang, and J. W. Yoon, “Utilisation d’un solide hybride cristallin poreux comme catalyseur comme catalyseur de réduction d’oxydes d’azote et dispositifs” International patent FR2010000402, 28 May 2009.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/12/10.1063/1.4904069
Loading
/content/aip/journal/aplmater/2/12/10.1063/1.4904069
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/12/10.1063/1.4904069
2014-12-30
2016-08-24

Abstract

The room temperature sorption properties of the biological gas nitric oxide (NO) have been investigated on the highly porous and rigid iron or chromium carboxylate based metal-organic frameworks Material Institut Lavoisier (MIL)-100(Fe or Cr) and MIL-127(Fe). In all cases, a significant amount of NO is chemisorbed at 298 K with a loading capacity that depends both on the nature of the metal cation, the structure and the presence of additional iron(II) Lewis acid sites. In a second step, the release of NO triggered by wet nitrogen gas has been studied by chemiluminescence and indicates that only a partial release of NO occurs as well as a prolonged delivery at the biological level. Finally, an infrared spectroscopy study confirms not only the coordination of NO over the Lewis acid sites and the stronger binding of NO on the additional iron(II) sites, providing further insights over the partial release of NO only in the presence of water at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/12/1.4904069.html;jsessionid=NtdkZ6MYnMtsDoGjk8SnNm2p.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/12/10.1063/1.4904069&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/12/10.1063/1.4904069&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4904069'
Right1,Right2,Right3,