Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. J. Liu, L. Y. Chen, Q. He, C. W. Liang, Y. Z. Chen, Y. S. Chien, Y. H. Hsieh, S. J. Lin, E. Arenholz, C. W. Luo, Y. L. Chueh, Y. C. Chen, and Y. H. Chu, ACS Nano 6(8), 6952 (2012);
1.A. Imai, X. Cheng, H. L. L. Xin, E. A. Eliseev, A. N. Morozovska, S. V. Kalinin, R. Takahashi, M. Lippmaa, Y. Matsumoto, and V. Nagarajan, ACS Nano 7(12), 11079 (2013);
1.H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M. P. Cruz, L. Q. Chen, U. Dahmen, and R. Ramesh, Nano Lett. 6(7), 1401 (2006).
2.V. Moshnyaga, B. Damaschke, O. Shapoval, A. Belenchuk, J. Faupel, O. I. Lebedev, J. Verbeeck, G. Van Tendeloo, M. Mucksch, V. Tsurkan, R. Tidecks, and K. Samwer, Nat. Mater. 2(4), 247 (2003).
3.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11(2), 103 (2012);
3.J. Mannhart and D. G. Schlom, Science 327(5973), 1607 (2010).
4.A. P. Chen, Z. X. Bi, H. Hazariwala, X. H. Zhang, Q. Su, L. Chen, Q. X. Jia, J. L. Macmanus-Driscoll, and H. Y. Wang, Nanotechnology 22(31), 315712 (2011).
5.A. Goyal, S. Kang, K. J. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, Supercond. Sci. Technol. 18(11), 1533 (2005);
5.J. W. Sinclair, Y. L. Zuev, C. Cantoni, S. H. Wee, C. Varanasi, J. R. Thompson, and D. K. Christen, Supercond. Sci. Technol. 25(11), 115003 (2012).
6.R. G. Yang, G. Chen, and M. S. Dresselhaus, Phys. Rev. B 72(12), 125418 (2005);
6.R. Robert, S. Romer, A. Reller, and A. Weidenkaff, Adv. Eng. Mater. 7(5), 303 (2005).
7.Y. Z. Gao, G. X. Cao, J. C. Zhang, and H. U. Habermeier, Phys. Rev. B 85(19), 195128 (2012).
8.Y. Z. Gao, J. C. Zhang, G. X. Cao, X. F. Mi, and H. U. Habermeier, Solid State Commun. 154, 46 (2013).
9.Y. Z. Gao, J. C. Zhang, X. W. Fu, G. X. Cao, and H. U. Habermeier, Prog. Nat. Sci.-Mater. 23(2), 127 (2013).
10.D. Häussler, L. Houben, S. Essig, M. Kurttepeli, F. Dimroth, R. E. Dunin-Borkowski, and W. Jäger, Ultramicroscopy 134, 55 (2013);
10.D. A. Muller, L. F. Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellby, and O. L. Krivanek, Science 319(5866), 1073 (2008);
10.S. Lazar, Y. Shao, L. Gunawan, R. Nechache, A. Pignolet, and G. A. Botton, Microsc. Microanal. 16(4), 416 (2010);
10.J. C. Idrobo, W. Walkosz, R. F. Klie, and S. Ögüt, Ultramicroscopy 123, 74 (2012).
11.A. J. Hatt and N. A. Spaldin, Phys. Rev. B 82(19), 195402 (2010).
12.S. V. Trukhanov, I. O. Troyanchuk, I. A. Bobrikov, V. G. Simkin, and A. M. Balagurov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 1(6), 705 (2007);
12.N. Kallel, N. Ihzaz, S. Kallel, A. Hagaza, and M. Oumezzine, J. Magn. Magn. Mater. 321(15), 2285 (2009).
13.H. P. Ding, A. V. Virkar, and F. Liu, Solid State Ionics 215, 16 (2012).
14.G. Bayer, J. Am. Ceram. Soc. 53(5), 294 (1970);
14.R. E. Smallman and R. J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th ed. (Butterworth-Heinemann, Oxford, 1999).
15.N. Igawa and Y. Ishii, J. Am. Ceram. Soc. 84(5), 1169 (2001).
16.S. W. Kang, H. J. Park, T. Kim, T. Dann, O. Kryliouk, and T. Anderson, Phys. Status Solidi C 2(7), 2420 (2005).
17.H. Y. Tan, J. Verbeeck, A. Abakumov, and G. Van Tendeloo, Ultramicroscopy 116, 24 (2012);
17.L. A. J. Garvie, A. J. Craven, and R. Brydson, Am. Mineral. 79(5-6), 411 (1994).
18.S. Saravanakumar, J. Kamalaveni, M. P. Rani, and R. Saravanan, J. Mater. Sci.: Mater. Electron. 25(2), 837 (2014);
18.M. Lajavardi, D. J. Kenney, and S. H. Lin, J. Chin. Chem. Soc. (Taipei, Taiwan) 47(5), 1055 (2000)
19.C. C. Appel, Ionics 1(5–6), 406 (1995).
20.T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics 53, 418 (1992).
21.M. S. Kim, J. B. Yang, Q. Cai, W. J. James, W. B. Yelon, P. E. Parris, and S. K. Malik, J. Appl. Phys. 102(1), 013531 (2007).
22.S. Roy and N. Ali, J. Appl. Phys. 89(11), 7425 (2001).
23.A. A. Alharbi, M. Alkahtani, and O. Al-Dossary, AIP Conf. Proc. 1370, 116 (2011);
23.S. Picozzi, C. Ma, Z. Yang, R. Bertacco, M. Cantoni, A. Cattoni, D. Petti, S. Brivio, and F. Ciccacci, Phys. Rev. B 75(9), 094418 (2007).
24.S. Majumdar and S. van Dijken, J. Phys. D: Appl. Phys. 47(3), 034010 (2014).
25.See supplementary material at for structure model and more TEM results, Figures S1-S5.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We studied ZrO − LaSrMnO pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd