Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/12/10.1063/1.4904819
1.
1.H. J. Liu, L. Y. Chen, Q. He, C. W. Liang, Y. Z. Chen, Y. S. Chien, Y. H. Hsieh, S. J. Lin, E. Arenholz, C. W. Luo, Y. L. Chueh, Y. C. Chen, and Y. H. Chu, ACS Nano 6(8), 6952 (2012);
http://dx.doi.org/10.1021/nn301976p
1.A. Imai, X. Cheng, H. L. L. Xin, E. A. Eliseev, A. N. Morozovska, S. V. Kalinin, R. Takahashi, M. Lippmaa, Y. Matsumoto, and V. Nagarajan, ACS Nano 7(12), 11079 (2013);
http://dx.doi.org/10.1021/nn404779x
1.H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M. P. Cruz, L. Q. Chen, U. Dahmen, and R. Ramesh, Nano Lett. 6(7), 1401 (2006).
http://dx.doi.org/10.1021/nl060401y
2.
2.V. Moshnyaga, B. Damaschke, O. Shapoval, A. Belenchuk, J. Faupel, O. I. Lebedev, J. Verbeeck, G. Van Tendeloo, M. Mucksch, V. Tsurkan, R. Tidecks, and K. Samwer, Nat. Mater. 2(4), 247 (2003).
http://dx.doi.org/10.1038/nmat859
3.
3.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11(2), 103 (2012);
http://dx.doi.org/10.1038/nmat3223
3.J. Mannhart and D. G. Schlom, Science 327(5973), 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
4.
4.A. P. Chen, Z. X. Bi, H. Hazariwala, X. H. Zhang, Q. Su, L. Chen, Q. X. Jia, J. L. Macmanus-Driscoll, and H. Y. Wang, Nanotechnology 22(31), 315712 (2011).
http://dx.doi.org/10.1088/0957-4484/22/31/315712
5.
5.A. Goyal, S. Kang, K. J. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, Supercond. Sci. Technol. 18(11), 1533 (2005);
http://dx.doi.org/10.1088/0953-2048/18/11/021
5.J. W. Sinclair, Y. L. Zuev, C. Cantoni, S. H. Wee, C. Varanasi, J. R. Thompson, and D. K. Christen, Supercond. Sci. Technol. 25(11), 115003 (2012).
http://dx.doi.org/10.1088/0953-2048/25/11/115003
6.
6.R. G. Yang, G. Chen, and M. S. Dresselhaus, Phys. Rev. B 72(12), 125418 (2005);
http://dx.doi.org/10.1103/physrevb.72.125418
6.R. Robert, S. Romer, A. Reller, and A. Weidenkaff, Adv. Eng. Mater. 7(5), 303 (2005).
http://dx.doi.org/10.1002/adem.200500043
7.
7.Y. Z. Gao, G. X. Cao, J. C. Zhang, and H. U. Habermeier, Phys. Rev. B 85(19), 195128 (2012).
http://dx.doi.org/10.1103/physrevb.85.195128
8.
8.Y. Z. Gao, J. C. Zhang, G. X. Cao, X. F. Mi, and H. U. Habermeier, Solid State Commun. 154, 46 (2013).
http://dx.doi.org/10.1016/j.ssc.2012.10.035
9.
9.Y. Z. Gao, J. C. Zhang, X. W. Fu, G. X. Cao, and H. U. Habermeier, Prog. Nat. Sci.-Mater. 23(2), 127 (2013).
http://dx.doi.org/10.1016/j.pnsc.2013.03.003
10.
10.D. Häussler, L. Houben, S. Essig, M. Kurttepeli, F. Dimroth, R. E. Dunin-Borkowski, and W. Jäger, Ultramicroscopy 134, 55 (2013);
http://dx.doi.org/10.1016/j.ultramic.2013.07.005
10.D. A. Muller, L. F. Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellby, and O. L. Krivanek, Science 319(5866), 1073 (2008);
http://dx.doi.org/10.1126/science.1148820
10.S. Lazar, Y. Shao, L. Gunawan, R. Nechache, A. Pignolet, and G. A. Botton, Microsc. Microanal. 16(4), 416 (2010);
http://dx.doi.org/10.1017/s1431927610013504
10.J. C. Idrobo, W. Walkosz, R. F. Klie, and S. Ögüt, Ultramicroscopy 123, 74 (2012).
http://dx.doi.org/10.1016/j.ultramic.2012.05.008
11.
11.A. J. Hatt and N. A. Spaldin, Phys. Rev. B 82(19), 195402 (2010).
http://dx.doi.org/10.1103/physrevb.82.195402
12.
12.S. V. Trukhanov, I. O. Troyanchuk, I. A. Bobrikov, V. G. Simkin, and A. M. Balagurov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 1(6), 705 (2007);
http://dx.doi.org/10.1134/s1027451007060158
12.N. Kallel, N. Ihzaz, S. Kallel, A. Hagaza, and M. Oumezzine, J. Magn. Magn. Mater. 321(15), 2285 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.01.015
13.
13.H. P. Ding, A. V. Virkar, and F. Liu, Solid State Ionics 215, 16 (2012).
http://dx.doi.org/10.1016/j.ssi.2012.03.014
14.
14.G. Bayer, J. Am. Ceram. Soc. 53(5), 294 (1970);
http://dx.doi.org/10.1111/j.1151-2916.1970.tb12109
14.R. E. Smallman and R. J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th ed. (Butterworth-Heinemann, Oxford, 1999).
15.
15.N. Igawa and Y. Ishii, J. Am. Ceram. Soc. 84(5), 1169 (2001).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00808.x
16.
16.S. W. Kang, H. J. Park, T. Kim, T. Dann, O. Kryliouk, and T. Anderson, Phys. Status Solidi C 2(7), 2420 (2005).
http://dx.doi.org/10.1002/pssc.200461562
17.
17.H. Y. Tan, J. Verbeeck, A. Abakumov, and G. Van Tendeloo, Ultramicroscopy 116, 24 (2012);
http://dx.doi.org/10.1016/j.ultramic.2012.03.002
17.L. A. J. Garvie, A. J. Craven, and R. Brydson, Am. Mineral. 79(5-6), 411 (1994).
18.
18.S. Saravanakumar, J. Kamalaveni, M. P. Rani, and R. Saravanan, J. Mater. Sci.: Mater. Electron. 25(2), 837 (2014);
http://dx.doi.org/10.1007/s10854-013-1654-8
18.M. Lajavardi, D. J. Kenney, and S. H. Lin, J. Chin. Chem. Soc. (Taipei, Taiwan) 47(5), 1055 (2000)
http://dx.doi.org/10.1002/jccs.200000143
19.
19.C. C. Appel, Ionics 1(5–6), 406 (1995).
http://dx.doi.org/10.1007/BF02375284
20.
20.T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics 53, 418 (1992).
http://dx.doi.org/10.1016/0167-2738(92)90409-i
21.
21.M. S. Kim, J. B. Yang, Q. Cai, W. J. James, W. B. Yelon, P. E. Parris, and S. K. Malik, J. Appl. Phys. 102(1), 013531 (2007).
http://dx.doi.org/10.1063/1.2749472
22.
22.S. Roy and N. Ali, J. Appl. Phys. 89(11), 7425 (2001).
http://dx.doi.org/10.1063/1.1362653
23.
23.A. A. Alharbi, M. Alkahtani, and O. Al-Dossary, AIP Conf. Proc. 1370, 116 (2011);
http://dx.doi.org/10.1063/1.3638091
23.S. Picozzi, C. Ma, Z. Yang, R. Bertacco, M. Cantoni, A. Cattoni, D. Petti, S. Brivio, and F. Ciccacci, Phys. Rev. B 75(9), 094418 (2007).
http://dx.doi.org/10.1103/physrevb.75.094418
24.
24.S. Majumdar and S. van Dijken, J. Phys. D: Appl. Phys. 47(3), 034010 (2014).
http://dx.doi.org/10.1088/0022-3727/47/3/034010
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4904819 for structure model and more TEM results, Figures S1-S5.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/12/10.1063/1.4904819
Loading
/content/aip/journal/aplmater/2/12/10.1063/1.4904819
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/12/10.1063/1.4904819
2014-12-23
2016-10-01

Abstract

We studied ZrO − LaSrMnO pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/12/1.4904819.html;jsessionid=9U6kg9C7QG6LknSwHc_tBB1P.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/12/10.1063/1.4904819&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/12/10.1063/1.4904819&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4904819'
Top,Right1,Right2,Right3,