Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/12/10.1063/1.4904966
1.
1.H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, Science 341(6149), 1230444 (2013).
http://dx.doi.org/10.1126/science.1230444
2.
2.G. Férey, Chem Soc Rev 37(1), 191-214 (2008).
http://dx.doi.org/10.1039/b618320b
3.
3.S. Kitagawa, R. Kitaura, and S.-I. Noro, Angew. Chem., Int. Ed. 43(18), 2334-2375 (2004).
http://dx.doi.org/10.1002/anie.200300610
4.
4.C. N. R. Rao, A. K. Cheetham, and A. Thirumurugan, J. Phys: Condens. Matter 20(8), 083202 (2008).
http://dx.doi.org/10.1088/0953-8984/20/8/083202
5.
5.S. T. Meek, J. A. Greathouse, and M. D. Allendorf, Adv. Mater. 23(2), 249-267 (2011).
http://dx.doi.org/10.1002/adma.201002854
6.
6.K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch, Z. R. Herm, T. H. Bae, and J. R. Long, Chem. Rev. 112(2), 724-781 (2012).
http://dx.doi.org/10.1021/cr2003272
7.
7.J.-R. Li, R. J. Kuppler, and H.-C. Zhou, Chem. Soc. Rev. 38(5), 1477-1504 (2009).
http://dx.doi.org/10.1039/b802426j
8.
8.M. Yoon, R. Srirambalaji, and K. Kim, Chem. Rev. 112(2), 1196-1231 (2012).
http://dx.doi.org/10.1021/cr2003147
9.
9.J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Chem. Soc. Rev. 38(5), 1450-1459 (2009).
http://dx.doi.org/10.1039/b807080f
10.
10.L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van duyne, and J. T. Hupp, Chem. Rev. 112(2), 1105-1125 (2012).
http://dx.doi.org/10.1021/cr200324t
11.
11.U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastré, J. Mater. Chem. 16(7), 626-636 (2006).
http://dx.doi.org/10.1039/b511962f
12.
12.D. Bahr, J. Reid, W. Mook, C. Bauer, R. Stumpf, A. Skulan, N. Moody, B. Simmons, M. Shindel, and M. Allendorf, Phys. Rev. B 76(18), 184106 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.184106
13.
13.S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, Appl. Phys. Lett. 101(10), 101910 (2012).
http://dx.doi.org/10.1063/1.4751286
14.
14.E. C. Spencer, N. L. Ross, and R. J. Angel, J. Mater. Chem. 22(5), 2074 (2012).
http://dx.doi.org/10.1039/c2jm15206a
15.
15.J. C. Tan, J. D. Furman, and A. K. Cheetham, J. Am. Chem. Soc. 131(40), 14252-14254 (2009).
http://dx.doi.org/10.1021/ja9060307
16.
16.K. J. Gagnon, C. M. Beavers, and A. Clearfield, J. Am. Chem. Soc. 135(4), 1252-1255 (2013).
http://dx.doi.org/10.1021/ja311613p
17.
17.J. C. Tan, T. D. Bennett, and A. K. Cheetham, Proc. Natl. Acad. Sci. U. S. A. 107(22), 9938-9943 (2010).
http://dx.doi.org/10.1073/pnas.1003205107
18.
18.J. C. Tan, C. A. Merrill, J. B. Orton, and A. K. Cheetham, Acta Mater. 57(12), 3481-3496 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.04.004
19.
19.W. Li, P. T. Barton, M. S. Kiran, R. P. Burwood, U. Ramamurty, and A. K. Cheetham, Chem. - Eur. J. 17(44), 12429-12436 (2011).
http://dx.doi.org/10.1002/chem.201101251
20.
20.J. C. Tan, P. J. Saines, E. G. Bithell, and A. K. Cheetham, ACS Nano 6(1), 615-621 (2012).
http://dx.doi.org/10.1021/nn204054k
21.
21.P. Serra-Crespo, E. Stavitski, F. Kapteijn, and J. Gascon, RSC Adv. 2(12), 5051-5053 (2012).
http://dx.doi.org/10.1039/c2ra20528a
22.
22.F.-X. Coudert, A. Boutin, A. H. Fuchs, and A. V. Neimark, J. Phys. Chem. Lett. 4(19), 3198-3205 (2013).
http://dx.doi.org/10.1021/jz4013849
23.
23.A. Ghoufi, A. Subercaze, Q. Ma, P. G. Yot, Y. Ke, I. Puente-Orench, T. Devic, V. Guillerm, C. Zhong, C. Serre, G. Férey, and G. Maurin, J. Phys. Chem. C 116(24), 13289-13295 (2012).
http://dx.doi.org/10.1021/jp303686m
24.
24.P. G. Yot, Q. Ma, J. Haines, Q. Yang, A. Ghoufi, T. Devic, C. Serre, V. Dmitriev, G. Férey, C. Zhong, and G. Maurin, Chem. Sci. 3(4), 1100 (2012).
http://dx.doi.org/10.1039/c2sc00745b
25.
25.J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T. D. Bennett, C. Mellot-Draznieks, C. M. Zicovich-Wilson, and A. K. Cheetham, Phys. Rev. Lett. 108(9), 095502 (2012).
http://dx.doi.org/10.1103/physrevlett.108.095502
26.
26.W. Cai and A. Katrusiak, Nat. Commun. 5(4337), 7716 (2014).
http://dx.doi.org/10.1038/ncomms5337
27.
27.A. J. Graham, D. R. Allan, A. Muszkiewicz, C. A. Morrison, and S. A. Moggach, Angew. Chem., Int. Ed. 50(47), 11138-11141 (2011).
http://dx.doi.org/10.1002/anie.201104285
28.
28.S. A. Moggach, T. D. Bennett, and A. K. Cheetham, Angew. Chem., Int. Ed. 48(38), 7087-7089 (2009).
http://dx.doi.org/10.1002/anie.200902643
29.
29.I. Beurroies, M. Boulhout, P. L. Llewellyn, B. Kuchta, G. Férey, C. Serre, and R. Denoyel, Angew. Chem., Int. Ed. 49(41), 7526-7529 (2010).
http://dx.doi.org/10.1002/anie.201003048
30.
30.K. W. Chapman, G. J. Halder, and P. J. Chupas, J. Am. Chem. Soc. 130(32), 10524-10526 (2008).
http://dx.doi.org/10.1021/ja804079z
31.
31.T. D. Bennett, J. C. Tan, S. A. Moggach, R. Galvelis, C. Mellot-Draznieks, B. A. Reisner, A. Thirumurugan, D. R. Allan, and A. K. Cheetham, Chem. Eur. J. 16(35), 10684-10690 (2010).
http://dx.doi.org/10.1002/chem.201001415
32.
32.A. J. Graham, J. C. Tan, D. R. Allan, and S. A. Moggach, Chem. Commun. 48(10), 1535-1537 (2012).
http://dx.doi.org/10.1039/c1cc16045a
33.
33.W. Li, M. S. Kiran, J. L. Manson, J. A. Schlueter, A. Thirumurugan, U. Ramamurty, and A. K. Cheetham, Chem. Commun. 49(40), 4471-4473 (2013).
http://dx.doi.org/10.1039/c3cc41357h
34.
34.K. W. Chapman, G. J. Halder, and P. J. Chupas, J. Am. Chem. Soc. 131(48), 17546-17547 (2009).
http://dx.doi.org/10.1021/ja908415z
35.
35.V. I. Hegde, J.-C. Tan, U. V. Waghmare, and A. K. Cheetham, J. Phys. Chem. Lett. 4(20), 33773381 (2013).
http://dx.doi.org/10.1021/jz4016734
36.
36.J. C. Tan and A. K. Cheetham, Chem. Soc. Rev. 40(2), 1059-1080 (2011).
http://dx.doi.org/10.1039/c0cs00163e
37.
37.A. M. Walker, B. Civalleri, B. Slater, C. Mellot-Draznieks, F. Cora, C. M. Zicovich-Wilson, G. Roman-Perez, J. M. Soler, and J. D. Gale, Angew. Chem., Int. Ed. 49(41), 7501-7503 (2010).
http://dx.doi.org/10.1002/anie.201002413
38.
38.Y. Liu, J.-H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, and C. M. Brown, J. Am. Chem. Soc. 130(35), 11813-11818 (2008).
http://dx.doi.org/10.1021/ja803669w
39.
39.T. D. Bennett and A. K. Cheetham, Acc. Chem. Res. 47(5), 1555-1562 (2014).
http://dx.doi.org/10.1021/ar5000314
40.
40.E. C. Spencer, R. J. Angel, N. L. Ross, B. E. Hanson, and J. A. Howard, J. Am. Chem. Soc. 131(11), 4022-4026 (2009).
http://dx.doi.org/10.1021/ja808531m
41.
41.E. C. Spencer, M. S. Kiran, W. Li, U. Ramamurty, N. L. Ross, and A. K. Cheetham, Angew. Chem., Int. Ed. 53(22), 5583-5586 (2014).
http://dx.doi.org/10.1002/anie.201310276
42.
42.W. Li, M. R. Probert, M. Kosa, T. D. Bennett, A. Thirumurugan, R. P. Burwood, M. Parinello, J. A. Howard, and A. K. Cheetham, J. Am. Chem. Soc. 134(29), 11940-11943 (2012).
http://dx.doi.org/10.1021/ja305196u
43.
43.M. Zhou, K. Wang, Z. Men, C. Sun, Z. Li, B. Liu, G. Zou, and B. Zou, CrystEngComm 16(20), 4084 (2014).
http://dx.doi.org/10.1039/c3ce42607f
44.
44.P. Serra-Crespo, A. Dikhtiarenko, E. Stavitski, J. Juan-Alcañiz, F. Kapteijn, F.-X. Coudert, and J. Gascon, CrystEngComm 17, 276 (2015).
http://dx.doi.org/10.1039/c4ce00436a
45.
45.S. S. Han and W. A. Goddard, J. Phys. Chem. C 111(42), 15185-15191 (2007).
http://dx.doi.org/10.1021/jp075389s
46.
46.Y. Wu, V. K. Peterson, E. Luks, T. A. Darwish, and C. J. Kepert, Angew. Chem., Int. Ed. 53(20), 5175-5178 (2014).
http://dx.doi.org/10.1002/anie.201311055
47.
47.S. Henke, A. Schneemann, and R. A. Fischer, Adv. Funct. Mater. 23(48), 5990-5996 (2013).
http://dx.doi.org/10.1002/adfm.201301256
48.
48.L. D. Devries, P. M. Barron, E. P. Hurley, C. Hu, and W. Choe, J. Am. Chem. Soc. 133(38), 14848-14851 (2011).
http://dx.doi.org/10.1021/ja2032822
49.
49.L. Sarkisov, R. L. Martin, M. Haranczyk, and B. Smit, J. Am. Chem. Soc. 136(6), 2228-2231 (2014).
http://dx.doi.org/10.1021/ja411673b
50.
50.H. Wu, T. Yildirim, and W. Zhou, J. Phys. Chem. Lett. 4(6), 925-930 (2013).
http://dx.doi.org/10.1021/jz4002345
51.
51.I. E. Collings, M. G. Tucker, D. A. Keen, and A. L. Goodwin, CrystEngComm 16(17), 3498 (2014).
http://dx.doi.org/10.1039/c3ce42165a
52.
52.A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, Phys. Rev. Lett. 109(19), 195502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.195502
53.
53.D. N. Dybtsev, H. Chun, and K. Kim, Angew. Chem., Int. Ed. 43(38), 5033-5036 (2004).
http://dx.doi.org/10.1002/anie.200460712
54.
54.J. M. Ogborn, I. E. Collings, S. A. Moggach, A. L. Thompson, and A. L. Goodwin, Chem. Sci. 3(10), 3011 (2012).
http://dx.doi.org/10.1039/c2sc20596c
55.
55.A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. X. Coudert, J. Chem. Phys. 138(17), 174703 (2013).
http://dx.doi.org/10.1063/1.4802770
56.
56.J. C. Tan, P. Jain, and A. K. Cheetham, Dalton Trans. 41(14), 3949-3952 (2012).
http://dx.doi.org/10.1039/c2dt12300b
57.
57.S. Henke, W. Li, and A. K. Cheetham, Chem. Sci. 5(6), 2392 (2014).
http://dx.doi.org/10.1039/c4sc00497c
58.
58.W. Li, A. Thirumurugan, P. T. Barton, Z. Lin, S. Henke, H. H. Yeung, M. T. Wharmby, E. G. Bithell, C. J. Howard, and A. K. Cheetham, J. Am. Chem. Soc. 136(22), 7801-7804 (2014).
http://dx.doi.org/10.1021/ja500618z
59.
59.Z. Wang, B. Zhang, T. Otsukaa, K. Inouea, H. Kobayashi, and M. Kurmoo, Dalton Trans. 2004, 2209-2216 (2004).
http://dx.doi.org/10.1039/b404466e
60.
60.K.-L. Hu, M. Kurmo, Z. Wang, and S. Gao, Chem. Eur. J. 15(44), 12050-12064 (2009).
http://dx.doi.org/10.1002/chem.200901605
61.
61.G. Kieslich, S. Sun, and A. K. Cheetham, Chem. Sci. 5, 4172-4175 (2014).
http://dx.doi.org/10.1039/c4sc02211d
62.
62.Z. Wang, K. Hu, S. Gao, and H. Kobayashi, Adv. Mater. 22(13), 1526-1533 (2010).
http://dx.doi.org/10.1002/adma.200904438
63.
63.R. Kumar, D. Raut, I. Ahmad, U. Ramamurty, T. K. Majia, and C. N. R. Rao, Mater. Horiz. 1, 513 (2014).
http://dx.doi.org/10.1039/C4MH00065J
64.
64.K. E. Prasad, B. Das, U. Maitra, U. Ramamurty, and C. N. R. Rao, Proc. Natl. Acad. Sci. U.S.A. 106(32), 13186 (2009).
http://dx.doi.org/10.1073/pnas.0905844106
65.
65.E. C. Spencer, N. L. Ross, R. G. Surbella III, and C. L. Cahill, J. Solid State Chem. 218, 1-5 (2014).
http://dx.doi.org/10.1016/j.jssc.2014.05.026
66.
66.R. I. Thomson, P. Jain, A. K. Cheetham, J. M. Rawson, and M. A. Carpenter, Phys. Rev. B 86, 214304 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.214304
67.
67.A. V. Neimark, F.-X. Coudert, C. Triguero, A. Boutin, A. H. Fuchs, I. Beurroies, and R. Denoyel, Langmuir 27(8), 4734-4741 (2011).
http://dx.doi.org/10.1021/la200094x
68.
68.A. U. Ortiz, A. Boutin, and F.-X. Coudert, Chem. Commun. 50, 5867-5870 (2014).
http://dx.doi.org/10.1039/c4cc00734d
69.
69.U. Ramamurty and J.-I. Jang, CrystEngComm 16, 1223 (2014).
http://dx.doi.org/10. 1039/c3ce41266k
70.
70.S. Varughese, M. S. R. N. Kiran, U. Ramamurty, and G. R. Desiraju, Angew. Chem., Int. Ed. 52(10), 2701 (2013).
http://dx.doi.org/10.1002/anie.201205002
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/12/10.1063/1.4904966
Loading
/content/aip/journal/aplmater/2/12/10.1063/1.4904966
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/12/10.1063/1.4904966
2014-12-30
2016-12-06

Abstract

Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/12/1.4904966.html;jsessionid=Ntpg_Hw9vgnht-b38iCdnsuG.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/12/10.1063/1.4904966&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/12/10.1063/1.4904966&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4904966'
Top,Right1,Right2,Right3,