Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, Science 341(6149), 1230444 (2013).
2.G. Férey, Chem Soc Rev 37(1), 191-214 (2008).
3.S. Kitagawa, R. Kitaura, and S.-I. Noro, Angew. Chem., Int. Ed. 43(18), 2334-2375 (2004).
4.C. N. R. Rao, A. K. Cheetham, and A. Thirumurugan, J. Phys: Condens. Matter 20(8), 083202 (2008).
5.S. T. Meek, J. A. Greathouse, and M. D. Allendorf, Adv. Mater. 23(2), 249-267 (2011).
6.K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch, Z. R. Herm, T. H. Bae, and J. R. Long, Chem. Rev. 112(2), 724-781 (2012).
7.J.-R. Li, R. J. Kuppler, and H.-C. Zhou, Chem. Soc. Rev. 38(5), 1477-1504 (2009).
8.M. Yoon, R. Srirambalaji, and K. Kim, Chem. Rev. 112(2), 1196-1231 (2012).
9.J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Chem. Soc. Rev. 38(5), 1450-1459 (2009).
10.L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van duyne, and J. T. Hupp, Chem. Rev. 112(2), 1105-1125 (2012).
11.U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastré, J. Mater. Chem. 16(7), 626-636 (2006).
12.D. Bahr, J. Reid, W. Mook, C. Bauer, R. Stumpf, A. Skulan, N. Moody, B. Simmons, M. Shindel, and M. Allendorf, Phys. Rev. B 76(18), 184106 (2007).
13.S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, Appl. Phys. Lett. 101(10), 101910 (2012).
14.E. C. Spencer, N. L. Ross, and R. J. Angel, J. Mater. Chem. 22(5), 2074 (2012).
15.J. C. Tan, J. D. Furman, and A. K. Cheetham, J. Am. Chem. Soc. 131(40), 14252-14254 (2009).
16.K. J. Gagnon, C. M. Beavers, and A. Clearfield, J. Am. Chem. Soc. 135(4), 1252-1255 (2013).
17.J. C. Tan, T. D. Bennett, and A. K. Cheetham, Proc. Natl. Acad. Sci. U. S. A. 107(22), 9938-9943 (2010).
18.J. C. Tan, C. A. Merrill, J. B. Orton, and A. K. Cheetham, Acta Mater. 57(12), 3481-3496 (2009).
19.W. Li, P. T. Barton, M. S. Kiran, R. P. Burwood, U. Ramamurty, and A. K. Cheetham, Chem. - Eur. J. 17(44), 12429-12436 (2011).
20.J. C. Tan, P. J. Saines, E. G. Bithell, and A. K. Cheetham, ACS Nano 6(1), 615-621 (2012).
21.P. Serra-Crespo, E. Stavitski, F. Kapteijn, and J. Gascon, RSC Adv. 2(12), 5051-5053 (2012).
22.F.-X. Coudert, A. Boutin, A. H. Fuchs, and A. V. Neimark, J. Phys. Chem. Lett. 4(19), 3198-3205 (2013).
23.A. Ghoufi, A. Subercaze, Q. Ma, P. G. Yot, Y. Ke, I. Puente-Orench, T. Devic, V. Guillerm, C. Zhong, C. Serre, G. Férey, and G. Maurin, J. Phys. Chem. C 116(24), 13289-13295 (2012).
24.P. G. Yot, Q. Ma, J. Haines, Q. Yang, A. Ghoufi, T. Devic, C. Serre, V. Dmitriev, G. Férey, C. Zhong, and G. Maurin, Chem. Sci. 3(4), 1100 (2012).
25.J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T. D. Bennett, C. Mellot-Draznieks, C. M. Zicovich-Wilson, and A. K. Cheetham, Phys. Rev. Lett. 108(9), 095502 (2012).
26.W. Cai and A. Katrusiak, Nat. Commun. 5(4337), 7716 (2014).
27.A. J. Graham, D. R. Allan, A. Muszkiewicz, C. A. Morrison, and S. A. Moggach, Angew. Chem., Int. Ed. 50(47), 11138-11141 (2011).
28.S. A. Moggach, T. D. Bennett, and A. K. Cheetham, Angew. Chem., Int. Ed. 48(38), 7087-7089 (2009).
29.I. Beurroies, M. Boulhout, P. L. Llewellyn, B. Kuchta, G. Férey, C. Serre, and R. Denoyel, Angew. Chem., Int. Ed. 49(41), 7526-7529 (2010).
30.K. W. Chapman, G. J. Halder, and P. J. Chupas, J. Am. Chem. Soc. 130(32), 10524-10526 (2008).
31.T. D. Bennett, J. C. Tan, S. A. Moggach, R. Galvelis, C. Mellot-Draznieks, B. A. Reisner, A. Thirumurugan, D. R. Allan, and A. K. Cheetham, Chem. Eur. J. 16(35), 10684-10690 (2010).
32.A. J. Graham, J. C. Tan, D. R. Allan, and S. A. Moggach, Chem. Commun. 48(10), 1535-1537 (2012).
33.W. Li, M. S. Kiran, J. L. Manson, J. A. Schlueter, A. Thirumurugan, U. Ramamurty, and A. K. Cheetham, Chem. Commun. 49(40), 4471-4473 (2013).
34.K. W. Chapman, G. J. Halder, and P. J. Chupas, J. Am. Chem. Soc. 131(48), 17546-17547 (2009).
35.V. I. Hegde, J.-C. Tan, U. V. Waghmare, and A. K. Cheetham, J. Phys. Chem. Lett. 4(20), 33773381 (2013).
36.J. C. Tan and A. K. Cheetham, Chem. Soc. Rev. 40(2), 1059-1080 (2011).
37.A. M. Walker, B. Civalleri, B. Slater, C. Mellot-Draznieks, F. Cora, C. M. Zicovich-Wilson, G. Roman-Perez, J. M. Soler, and J. D. Gale, Angew. Chem., Int. Ed. 49(41), 7501-7503 (2010).
38.Y. Liu, J.-H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, and C. M. Brown, J. Am. Chem. Soc. 130(35), 11813-11818 (2008).
39.T. D. Bennett and A. K. Cheetham, Acc. Chem. Res. 47(5), 1555-1562 (2014).
40.E. C. Spencer, R. J. Angel, N. L. Ross, B. E. Hanson, and J. A. Howard, J. Am. Chem. Soc. 131(11), 4022-4026 (2009).
41.E. C. Spencer, M. S. Kiran, W. Li, U. Ramamurty, N. L. Ross, and A. K. Cheetham, Angew. Chem., Int. Ed. 53(22), 5583-5586 (2014).
42.W. Li, M. R. Probert, M. Kosa, T. D. Bennett, A. Thirumurugan, R. P. Burwood, M. Parinello, J. A. Howard, and A. K. Cheetham, J. Am. Chem. Soc. 134(29), 11940-11943 (2012).
43.M. Zhou, K. Wang, Z. Men, C. Sun, Z. Li, B. Liu, G. Zou, and B. Zou, CrystEngComm 16(20), 4084 (2014).
44.P. Serra-Crespo, A. Dikhtiarenko, E. Stavitski, J. Juan-Alcañiz, F. Kapteijn, F.-X. Coudert, and J. Gascon, CrystEngComm 17, 276 (2015).
45.S. S. Han and W. A. Goddard, J. Phys. Chem. C 111(42), 15185-15191 (2007).
46.Y. Wu, V. K. Peterson, E. Luks, T. A. Darwish, and C. J. Kepert, Angew. Chem., Int. Ed. 53(20), 5175-5178 (2014).
47.S. Henke, A. Schneemann, and R. A. Fischer, Adv. Funct. Mater. 23(48), 5990-5996 (2013).
48.L. D. Devries, P. M. Barron, E. P. Hurley, C. Hu, and W. Choe, J. Am. Chem. Soc. 133(38), 14848-14851 (2011).
49.L. Sarkisov, R. L. Martin, M. Haranczyk, and B. Smit, J. Am. Chem. Soc. 136(6), 2228-2231 (2014).
50.H. Wu, T. Yildirim, and W. Zhou, J. Phys. Chem. Lett. 4(6), 925-930 (2013).
51.I. E. Collings, M. G. Tucker, D. A. Keen, and A. L. Goodwin, CrystEngComm 16(17), 3498 (2014).
52.A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, Phys. Rev. Lett. 109(19), 195502 (2012).
53.D. N. Dybtsev, H. Chun, and K. Kim, Angew. Chem., Int. Ed. 43(38), 5033-5036 (2004).
54.J. M. Ogborn, I. E. Collings, S. A. Moggach, A. L. Thompson, and A. L. Goodwin, Chem. Sci. 3(10), 3011 (2012).
55.A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. X. Coudert, J. Chem. Phys. 138(17), 174703 (2013).
56.J. C. Tan, P. Jain, and A. K. Cheetham, Dalton Trans. 41(14), 3949-3952 (2012).
57.S. Henke, W. Li, and A. K. Cheetham, Chem. Sci. 5(6), 2392 (2014).
58.W. Li, A. Thirumurugan, P. T. Barton, Z. Lin, S. Henke, H. H. Yeung, M. T. Wharmby, E. G. Bithell, C. J. Howard, and A. K. Cheetham, J. Am. Chem. Soc. 136(22), 7801-7804 (2014).
59.Z. Wang, B. Zhang, T. Otsukaa, K. Inouea, H. Kobayashi, and M. Kurmoo, Dalton Trans. 2004, 2209-2216 (2004).
60.K.-L. Hu, M. Kurmo, Z. Wang, and S. Gao, Chem. Eur. J. 15(44), 12050-12064 (2009).
61.G. Kieslich, S. Sun, and A. K. Cheetham, Chem. Sci. 5, 4172-4175 (2014).
62.Z. Wang, K. Hu, S. Gao, and H. Kobayashi, Adv. Mater. 22(13), 1526-1533 (2010).
63.R. Kumar, D. Raut, I. Ahmad, U. Ramamurty, T. K. Majia, and C. N. R. Rao, Mater. Horiz. 1, 513 (2014).
64.K. E. Prasad, B. Das, U. Maitra, U. Ramamurty, and C. N. R. Rao, Proc. Natl. Acad. Sci. U.S.A. 106(32), 13186 (2009).
65.E. C. Spencer, N. L. Ross, R. G. Surbella III, and C. L. Cahill, J. Solid State Chem. 218, 1-5 (2014).
66.R. I. Thomson, P. Jain, A. K. Cheetham, J. M. Rawson, and M. A. Carpenter, Phys. Rev. B 86, 214304 (2012).
67.A. V. Neimark, F.-X. Coudert, C. Triguero, A. Boutin, A. H. Fuchs, I. Beurroies, and R. Denoyel, Langmuir 27(8), 4734-4741 (2011).
68.A. U. Ortiz, A. Boutin, and F.-X. Coudert, Chem. Commun. 50, 5867-5870 (2014).
69.U. Ramamurty and J.-I. Jang, CrystEngComm 16, 1223 (2014). 1039/c3ce41266k
70.S. Varughese, M. S. R. N. Kiran, U. Ramamurty, and G. R. Desiraju, Angew. Chem., Int. Ed. 52(10), 2701 (2013).

Data & Media loading...


Article metrics loading...



Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd