Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. L. Noorduin, A. Grinthal, L. Mahadevan, and J. Aizenberg, Science 340, 832 (2013).
2. P. Vukusic and J. R. Sambles, Nature 424, 852 (2003).
3. K.-H. Chu, R. Xiao, and E. N. Wang, Nat. Mater. 9, 413 (2010).
4. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, Science 309, 275 (2005).
5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).
6. B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia, Science 324, 1302 (2009).
7. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007).
8. J. P. Xie, Q. B. Zhang, J. Y. Lee, and D. I. C. Wang, ACS Nano 2, 2473 (2008).
9. W. Z. Jia, L. Su, and Y. Lei, Biosens. Bioelectron. 30, 158 (2011).
10. J. Ge, J. Lei, and R. N. Zare, Nat. Nanotechnol. 7, 428 (2012).
11. J. Zeng and Y. Xia, Nat. Nanotechnol. 7, 415 (2012).
12. L.-B. Wang, Y.-C. Wang, R. He, A. Zhuang, X. Wang, J. Zeng, and J. G. Hou, J. Am. Chem. Soc. 135, 1272 (2013).
13. J. Sun, J. Ge, W. Liu, M. Lan, H. Zhang, P. Wang, Y. Wang, and Z. Niu, Nanoscale 6, 255262 (2014).
14. R. Wang, Y. Zhang, D. Lu, J. Ge, Z. Liu, and R. N. Zare, WIREs Nanomed. Nanobiotechnol. 5, 320 (2013).
15. S. M. Barinov and V. S. Komlev, Inorg. Mater. 47, 1470 (2011).
16. H. Yuan, K. Kurashina, J. D. de Bruijn, Y. Li, K. de Groot, and X. Zhang, Biomaterials 20, 1799 (1999).
17. P. Becker, H.-G. Neumann, B. Nebe, F. Lüthen, and J. Rychly, J. Mater. Sci.: Mater. Med. 15, 437 (2004).
18. D. W. Urry, T. L. Trapane, and K. U. Prasad, Biopolymers 24, 2345 (1985).
19. D. W. Urry, M. M. Long, B. A. Cox, T. Ohnishi, L. W. Mitchell, and M. Jacobs, Biochim. Biophys. Acta, Protein Struct. 371, 597 (1974).
20. M. T. Krejchi, E. D. T. Atkins, A. J. Waddon, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Science 265, 1427 (1994).
21. J. C. Rodriguez-Cabello, L. Martin, M. Alonso, F. J. Arias, and A. M. Testera, Polymer 50, 5159 (2009).
22. D. E. Meyer and A. Chilkoti, Biomacromolecules 3, 357 (2002).
23.See supplementary material at for detailed experimental methods, additional characterization data for ELPs and their composite nanoflowers, and control experiments. [Supplementary Material]
24. W. Hassouneh, T. Christensen, and A. Chilkoti, Curr. Protoc. Protein Sci. Chapter 6, Unit 6.11 (2010).
25. J. R. Pels, F. Kapteun, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Carbon 33, 1641 (1995).
26. T. V. Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham, K. B. Shim, and H. W. Kim, Carbon 50, 3799 (2012).
27. H. B. Lu, C. T. Campbell, D. J. Graham, and B. D. Rattner, Anal. Chem. 72, 2886 (2000).
28. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, Biomaterials 22, 1241 (2001).
29. N. Chandra, K. Brew, and K. R. Acharya, Biochemistry 37, 4767 (1998).
30. L. Rulisek and J. Vondrasek, J. Inorg. Biochem. 71, 115 (1998).
31. H. Kozlowski, S. Potocki, M. Remelli, M. Rowinska-Zyrek, and D. Valensin, Coord. Chem. Rev. 257, 2625 (2013).
32. I. Sovago, C. Kallay, and K. Varnagy, Coord. Chem. Rev. 256, 2225 (2012).
33. Y. J. J. De and P. M. Dove, Science 306, 1301 (2004).
34. S. Elhadj, Y. J. J. De, J. R. Hoyer, and P. M. Dove, Proc. Natl. Acad. Sci. U.S.A. 103, 19237 (2006).
35. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem., Int. Ed. 48, 60 (2009).
36. T. A. Witten Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).
37. R. Rousseau, E. Schreiner, A. Kohlmeyer, and D. Marx, Biophys. J. 86, 1393 (2004).
38. B. D. Boyan and Z. Schwartz, Nat. Rev. Rheumatol. 7, 8 (2011).
39. K. Bleek and A. Taubert, Acta Biomater. 9, 6283 (2013).
40. Y. Cai and J. Yao, Nanoscale 2, 1842 (2010).
41. U. Gbureck, T. Hölzel, U. Klammert, K. Würzler, F. A. Müller, and J. E. Barralet, Adv. Funct. Mater. 17, 3940 (2007).
42. Y. C. Chai, A. Carlier, J. Bolander, S. J. Roberts, L. Geris, J. Schrooten, O. H. Van, and F. P. Luyten, Acta Biomater. 8, 3876 (2012).
43. C. Zhou, Y. Hong, and X. Zhang, Biomater. Sci. 1, 1012 (2013).
44. L. A. Bawazer, M. Izumi, D. Kolodin, J. R. Neilson, B. Schwenzer, and D. E. Morse, Proc. Natl. Acad. Sci. U.S.A. 109, E1705 (2012).

Data & Media loading...


Article metrics loading...



We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca2+ or Cu 2+, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd