1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4863235
1.
1. W. L. Noorduin, A. Grinthal, L. Mahadevan, and J. Aizenberg, Science 340, 832 (2013).
http://dx.doi.org/10.1126/science.1234621
2.
2. P. Vukusic and J. R. Sambles, Nature 424, 852 (2003).
http://dx.doi.org/10.1038/nature01941
3.
3. K.-H. Chu, R. Xiao, and E. N. Wang, Nat. Mater. 9, 413 (2010).
http://dx.doi.org/10.1038/nmat2726
4.
4. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, Science 309, 275 (2005).
http://dx.doi.org/10.1126/science.1112255
5.
5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).
http://dx.doi.org/10.1126/science.1177031
6.
6. B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia, Science 324, 1302 (2009).
http://dx.doi.org/10.1126/science.1170377
7.
7. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007).
http://dx.doi.org/10.1063/1.2751588
8.
8. J. P. Xie, Q. B. Zhang, J. Y. Lee, and D. I. C. Wang, ACS Nano 2, 2473 (2008).
http://dx.doi.org/10.1021/nn800442q
9.
9. W. Z. Jia, L. Su, and Y. Lei, Biosens. Bioelectron. 30, 158 (2011).
http://dx.doi.org/10.1016/j.bios.2011.09.006
10.
10. J. Ge, J. Lei, and R. N. Zare, Nat. Nanotechnol. 7, 428 (2012).
http://dx.doi.org/10.1038/nnano.2012.80
11.
11. J. Zeng and Y. Xia, Nat. Nanotechnol. 7, 415 (2012).
http://dx.doi.org/10.1038/nnano.2012.105
12.
12. L.-B. Wang, Y.-C. Wang, R. He, A. Zhuang, X. Wang, J. Zeng, and J. G. Hou, J. Am. Chem. Soc. 135, 1272 (2013).
http://dx.doi.org/10.1021/ja3120136
13.
13. J. Sun, J. Ge, W. Liu, M. Lan, H. Zhang, P. Wang, Y. Wang, and Z. Niu, Nanoscale 6, 255262 (2014).
http://dx.doi.org/10.1039/c3nr04425d
14.
14. R. Wang, Y. Zhang, D. Lu, J. Ge, Z. Liu, and R. N. Zare, WIREs Nanomed. Nanobiotechnol. 5, 320 (2013).
http://dx.doi.org/10.1002/wnan.1210
15.
15. S. M. Barinov and V. S. Komlev, Inorg. Mater. 47, 1470 (2011).
http://dx.doi.org/10.1134/S0020168511130024
16.
16. H. Yuan, K. Kurashina, J. D. de Bruijn, Y. Li, K. de Groot, and X. Zhang, Biomaterials 20, 1799 (1999).
http://dx.doi.org/10.1016/S0142-9612(99)00075-7
17.
17. P. Becker, H.-G. Neumann, B. Nebe, F. Lüthen, and J. Rychly, J. Mater. Sci.: Mater. Med. 15, 437 (2004).
http://dx.doi.org/10.1023/B:JMSM.0000021116.13016.61
18.
18. D. W. Urry, T. L. Trapane, and K. U. Prasad, Biopolymers 24, 2345 (1985).
http://dx.doi.org/10.1002/bip.360241212
19.
19. D. W. Urry, M. M. Long, B. A. Cox, T. Ohnishi, L. W. Mitchell, and M. Jacobs, Biochim. Biophys. Acta, Protein Struct. 371, 597 (1974).
http://dx.doi.org/10.1016/0005-2795(74)90057-9
20.
20. M. T. Krejchi, E. D. T. Atkins, A. J. Waddon, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Science 265, 1427 (1994).
http://dx.doi.org/10.1126/science.8073284
21.
21. J. C. Rodriguez-Cabello, L. Martin, M. Alonso, F. J. Arias, and A. M. Testera, Polymer 50, 5159 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.08.032
22.
22. D. E. Meyer and A. Chilkoti, Biomacromolecules 3, 357 (2002).
http://dx.doi.org/10.1021/bm015630n
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4863235 for detailed experimental methods, additional characterization data for ELPs and their composite nanoflowers, and control experiments. [Supplementary Material]
24.
24. W. Hassouneh, T. Christensen, and A. Chilkoti, Curr. Protoc. Protein Sci. Chapter 6, Unit 6.11 (2010).
25.
25. J. R. Pels, F. Kapteun, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Carbon 33, 1641 (1995).
http://dx.doi.org/10.1016/0008-6223(95)00154-6
26.
26. T. V. Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham, K. B. Shim, and H. W. Kim, Carbon 50, 3799 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.04.005
27.
27. H. B. Lu, C. T. Campbell, D. J. Graham, and B. D. Rattner, Anal. Chem. 72, 2886 (2000).
http://dx.doi.org/10.1021/ac990812h
28.
28. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, Biomaterials 22, 1241 (2001).
http://dx.doi.org/10.1016/S0142-9612(00)00274-X
29.
29. N. Chandra, K. Brew, and K. R. Acharya, Biochemistry 37, 4767 (1998).
http://dx.doi.org/10.1021/bi973000t
30.
30. L. Rulisek and J. Vondrasek, J. Inorg. Biochem. 71, 115 (1998).
http://dx.doi.org/10.1016/S0162-0134(98)10042-9
31.
31. H. Kozlowski, S. Potocki, M. Remelli, M. Rowinska-Zyrek, and D. Valensin, Coord. Chem. Rev. 257, 2625 (2013).
http://dx.doi.org/10.1016/j.ccr.2013.01.024
32.
32. I. Sovago, C. Kallay, and K. Varnagy, Coord. Chem. Rev. 256, 2225 (2012).
http://dx.doi.org/10.1016/j.ccr.2012.02.026
33.
33. Y. J. J. De and P. M. Dove, Science 306, 1301 (2004).
http://dx.doi.org/10.1126/science.1100889
34.
34. S. Elhadj, Y. J. J. De, J. R. Hoyer, and P. M. Dove, Proc. Natl. Acad. Sci. U.S.A. 103, 19237 (2006).
http://dx.doi.org/10.1073/pnas.0605748103
35.
35. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem., Int. Ed. 48, 60 (2009).
http://dx.doi.org/10.1002/anie.200802248
36.
36. T. A. Witten Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.1400
37.
37. R. Rousseau, E. Schreiner, A. Kohlmeyer, and D. Marx, Biophys. J. 86, 1393 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74210-1
38.
38. B. D. Boyan and Z. Schwartz, Nat. Rev. Rheumatol. 7, 8 (2011).
http://dx.doi.org/10.1038/nrrheum.2010.210
39.
39. K. Bleek and A. Taubert, Acta Biomater. 9, 6283 (2013).
http://dx.doi.org/10.1016/j.actbio.2012.12.027
40.
40. Y. Cai and J. Yao, Nanoscale 2, 1842 (2010).
http://dx.doi.org/10.1039/c0nr00092b
41.
41. U. Gbureck, T. Hölzel, U. Klammert, K. Würzler, F. A. Müller, and J. E. Barralet, Adv. Funct. Mater. 17, 3940 (2007).
http://dx.doi.org/10.1002/adfm.200700019
42.
42. Y. C. Chai, A. Carlier, J. Bolander, S. J. Roberts, L. Geris, J. Schrooten, O. H. Van, and F. P. Luyten, Acta Biomater. 8, 3876 (2012).
http://dx.doi.org/10.1016/j.actbio.2012.07.002
43.
43. C. Zhou, Y. Hong, and X. Zhang, Biomater. Sci. 1, 1012 (2013).
http://dx.doi.org/10.1039/c3bm60058k
44.
44. L. A. Bawazer, M. Izumi, D. Kolodin, J. R. Neilson, B. Schwenzer, and D. E. Morse, Proc. Natl. Acad. Sci. U.S.A. 109, E1705 (2012).
http://dx.doi.org/10.1073/pnas.1116958109
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4863235
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4863235
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4863235
2014-02-03
2014-07-23

Abstract

We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca2+ or Cu 2+, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4863235.html;jsessionid=n0jfb02103ls.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4863235&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4863235
10.1063/1.4863235
SEARCH_EXPAND_ITEM