1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4863786
1.
1. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
2.
2. J. Mannhart, D. H. A. Blank, H. Y. Hwang, A. J. Millis, and J.-M. Triscone, MRS Bull. 33, 1027 (2008).
http://dx.doi.org/10.1557/mrs2008.222
3.
3. N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
4.
4. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. J. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nature Mater. 6, 493 (2007).
http://dx.doi.org/10.1038/nmat1931
5.
5. H. Chen, A. M. Kolpak, and S. Ismail-Beigi, Adv. Mater. 22, 2881 (2010).
http://dx.doi.org/10.1002/adma.200903800
6.
6. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, 1984).
7.
7. G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.216803
8.
8. A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête, N. Reyren, M. Gabay, A. F. Morpugo, and J.-M. Triscone, Phys. Rev. Lett. 105, 236802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.236802
9.
9. M. Ben Shalom, A. Ron, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 105, 206401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.206401
10.
10. Z. S. Popović, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101, 256801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.256801
11.
11. W. Son, E. Cho, B. Lee, J. Lee, and S. Han, Phys. Rev. B 79, 245411 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245411
12.
12. P. Delugas, A. Filippetti, V. Fiorentini, D. I. Bilc, D. Fontaine, and P. Ghosez, Phys. Rev. Lett. 106, 166807 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.166807
13.
13.See supplementary material at http://dx.doi.org/10.1063/1.4863786 for details of the sample growth, modeling of the diamagnetic shift for in-plane magnetic field, data from additional samples, and further discussions of spin-splitting and the Hall effect. [Supplementary Material]
14.
14. M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. Tendeloo, H. Hilgenkamp, and G. Rijnders, Adv. Funct. Mater. 23, 5240 (2013).
http://dx.doi.org/10.1002/adfm.201203355
15.
15. W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Phys. Rev. Lett. 98, 196802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196802
16.
16. C. Cancellieri, N. Reyren, S. Gariglio, A. D. Caviglia, A. Fête, and J.-M. Triscone, Europhys. Lett. 91, 17004 (2010).
http://dx.doi.org/10.1209/0295-5075/91/17004
17.
17. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
18.
18. M. Takizawa, S. Tsuda, T. Susaki, H. Y. Hwang, and A. Fujimori, Phys. Rev. B 84, 245124 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245124
19.
19. C. Bell, S. Harashima, Y. Hikita, and H. Y. Hwang, Appl. Phys. Lett. 94, 222111 (2009).
http://dx.doi.org/10.1063/1.3149695
20.
20. E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, and L. W. Martin, Phys. Rev. Lett. 110, 196804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.196804
21.
21. Y. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, Nature Commun. 2, 494 (2011).
http://dx.doi.org/10.1038/ncomms1501
22.
22. Y. Xie, C. Bell, Y. Hikita, S. Harashima, and H. Y. Hwang, Adv. Mater. 25, 4735 (2013).
http://dx.doi.org/10.1002/adma.201301798
23.
23. R. Pentcheva, M. Huijben, K. Otte, W. E. Pickett, J. E. Kleibeuker, J. Huijben, H. Boschker, D. Kockmann, W. Siemons, G. Koster, H. J. W. Zandvliet, G. Rijnders, D. H. A. Blank, H. Hilgenkamp, and A. Brinkman, Phys. Rev. Lett. 104, 166804 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.166804
24.
24. J. M. Reynolds, H. W. Hemstreet, T. E. Leinhardt, and D. D. Triantos, Phys. Rev. 96, 1203 (1954).
http://dx.doi.org/10.1103/PhysRev.96.1203
25.
25. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature (London) 447, 565 (2007).
http://dx.doi.org/10.1038/nature05872
26.
26. J. C. Maan, in Springer Series in Solid State Sciences, edited by G. Bauer, F. Kuchar, and H. Heinrich (Springer, Berlin, 1984), Vol. 53, p. 183.
27.
27. W. Beinvogl, A. Kamgar, and J. F. Koch, Phys. Rev. B 14, 4274 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.4274
28.
28. T. Englert, J. C. Maan, D. C. Tsui, and A. C. Gossard, Solid State Commun. 45, 989 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90974-2
29.
29. J. C. Portal, R. J. Nicholas, M. A. Brummell, A. Y. Cho, K. Y. Cheng, and T. P. Pearsall, Solid State Commun. 43, 907 (1982).
http://dx.doi.org/10.1016/0038-1098(82)90927-9
30.
30. I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1956).
31.
31. L. F. Mattheiss, Phys. Rev. B 6, 4740 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4740
32.
32. A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. L. L. Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, and M. J. Rozenberg, Nature (London) 469, 189 (2011).
http://dx.doi.org/10.1038/nature09720
33.
33. L. W. van Heeringen, G. A. de Wijs, A. McCollam, J. C. Maan, and A. Fasolino, Phys. Rev. B 88, 205140 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.205140
34.
34. G. Khalsa and A. H. MacDonald, Phys. Rev. B 86, 125121 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.125121
35.
35.We note that significant Fermi surface anisotropy for the most strongly hybridised subbands is a possible source of error in our value of nSdH, and non-parabolicity of the subbands may additionally lead to magnetic field dependence of the effective masses or carrier densities that we have not accounted for (see Ref. 32).
36.
36. S. Okamoto and A. J. Millis, Nature (London) 428, 630 (2004).
http://dx.doi.org/10.1038/nature02450
37.
37. Y. Kozuka, M. Kim, C. Bell, B. G. Kim, Y. Hikita, and H. Y. Hwang, Nature (London) 462, 487 (2009).
http://dx.doi.org/10.1038/nature08566
38.
38. M. Kim, C. Bell, Y. Kozuka, M. Kurita, Y. Hikita, and H. Y. Hwang, Phys. Rev. Lett. 107, 106801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.106801
39.
39. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mater. 7, 855 (2008).
http://dx.doi.org/10.1038/nmat2298
40.
40. K. Yoshimatsu, R. Yasuhara, H. Kumigashira, and M. Oshima, Phys. Rev. Lett. 101, 026802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026802
41.
41. Y. Segal, J. H. Ngai, J. W. Reiner, F. J. Walker, and C. H. Ahn, Phys. Rev. B 80, 241107R (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241107
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4863786
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4863786
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4863786
2014-02-04
2014-07-29

Abstract

We have performed high field magnetotransport measurements to investigate the interface electron gas in a high mobility SrTiO/SrCuO/LaAlO/SrTiO heterostructure. Shubnikov-de Haas oscillations reveal several 2D conduction subbands with carrier effective masses of 0.9 and 2 , quantum mobilities of order 2000 cm2/V s, and band edges only a few millielectronvolts below the Fermi energy. Measurements in tilted magnetic fields confirm the 2D character of the electron gas, and show evidence of inter-subband scattering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4863786.html;jsessionid=17bak116hdqoh.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4863786&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4863786
10.1063/1.4863786
SEARCH_EXPAND_ITEM