1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Self-organized internal architectures of chiral micro-particles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4863837
1.
1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288290 (1986).
http://dx.doi.org/10.1364/OL.11.000288
2.
2. K. Dholakia and T. Cizmar, Nat. Photon. 5, 335342 (2011).
http://dx.doi.org/10.1038/nphoton.2011.80
3.
3. M. Padgett and R. Bowman, Nat. Photon. 5, 343348 (2011).
http://dx.doi.org/10.1038/nphoton.2011.81
4.
4. A. Jonas and P. Zemanek, Electrophoresis 29, 48134851 (2008).
http://dx.doi.org/10.1002/elps.200800484
5.
5. M. Padgett and R. Di Leonardo, Lab Chip 11, 11961205 (2011).
http://dx.doi.org/10.1039/c0lc00526f
6.
6. G. M. Whitesides, Nature (London) 442, 368373 (2006).
http://dx.doi.org/10.1038/nature05058
7.
7. N. Blow, Nat. Methods 6, 683686 (2009).
http://dx.doi.org/10.1038/nmeth0909-683
8.
8. E. Gerstner, Nat. Phys. 7, 9898 (2011).
http://dx.doi.org/10.1038/nphys1927
9.
9. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106114 (2007).
http://dx.doi.org/10.1038/nphoton.2006.96
10.
10. D. Psaltis, S. R. Quake, and C. Yang, Nature (London) 442, 381386 (2006).
http://dx.doi.org/10.1038/nature05060
11.
11. Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang , Y. Wang, and H. L. W. Chan, Biomicrofluidics 4, 043002 (2010).
http://dx.doi.org/10.1063/1.3499949
12.
12. A. François and M. Himmelhaus, Appl. Phys. Lett. 92, 141107 (2008).
http://dx.doi.org/10.1063/1.2907491
13.
13. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, Faraday Discuss. 137, 6583 (2008).
http://dx.doi.org/10.1039/b702920a
14.
14. K. Zhou, L. Tong, J. Deng, and W. Yang, J. Mater. Chem. 20, 781789 (2010).
http://dx.doi.org/10.1039/b918132f
15.
15. S. Soria, S. Berneschi, M. Bronci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, Sensors 11, 785805 (2011).
http://dx.doi.org/10.3390/s110100785
16.
16. I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Mutrphy, J. J. de Pablo, and N. L. Abbot, Science 332, 12971300 (2011).
http://dx.doi.org/10.1126/science.1195639
17.
17. M. Humar, M. Ravnik, S. Pajk, and I. Musevic, Nat. Photon. 3, 595600 (2009).
http://dx.doi.org/10.1038/nphoton.2009.170
18.
18. F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, Ann. Telecommun. 52, 557568 (1997).
http://dx.doi.org/10.1007/BF02997612
19.
19. M. Humar and I. Musevic, Opt. Express 18, 2699527003 (2010).
http://dx.doi.org/10.1364/OE.18.026995
20.
20. M. P. Pileni, Nat. Mater. 2, 145150 (2003).
http://dx.doi.org/10.1038/nmat817
21.
21. F. Romano and F. Sciortino, Nat. Mater. 10, 171173 (2011).
http://dx.doi.org/10.1038/nmat2975
22.
22. Q. Chen, S. C. Bae, and S. Granick, Nature (London) 469, 381384 (2011).
http://dx.doi.org/10.1038/nature09713
23.
23. S. C. Glotzer and M. J. Solomon, Nat. Mater. 6, 557562 (2007).
http://dx.doi.org/10.1038/nmat1949
24.
24. G. M. Whitesides and B. Grzybowski, Science 295, 24182421 (2002).
http://dx.doi.org/10.1126/science.1070821
25.
25. I. Musevic, Philos. Trans. R. Soc. A 371, 20120266 (2013).
http://dx.doi.org/10.1098/rsta.2012.0266
26.
26. P. J. Lu and D. A. Weitz, Annu. Rev. Condens. Matter Phys. 4, 217233 (2013).
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184213
27.
27. M. Vennes, R. Zentel, M. Rössle, M. Stepputat, and U. Kolb, Adv. Mater. 17, 21232127 (2005).
http://dx.doi.org/10.1002/adma.200500310
28.
28. P. G. De Gennes, Rev. Mod. Phys. 64, 645648 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.645
29.
29. T. Honegger, O. Lecarme, K. Berton, and D. Peyrade, Microelectron. Eng. 87, 756759 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.145
30.
30. R. J. Hernández, A. Mazzulla, A. Pane, K. Volke-Sepúlveda, and G. Cipparrone, Lab Chip 13, 459467 (2013).
http://dx.doi.org/10.1039/c2lc40703e
31.
31. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, Adv. Mater. 23, 57735778 (2011).
http://dx.doi.org/10.1002/adma.201102828
32.
32. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor and Francis, London, 1996).
33.
33. O. D. Lavrentovich, Liq. Cryst. 24, 117126 (1998).
http://dx.doi.org/10.1080/026782998207640
34.
34. F. Xu and P. P. Crooker, Phys. Rev. E 56, 68536860 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.6853
35.
35. J. Fukuda and S. Zumer, Phys. Rev. Lett. 104, 017801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.017801
36.
36. Y. Bouligand and F. Livolant, J. Phys. 45, 18991923 (1984).
http://dx.doi.org/10.1051/jphys:0198400450120189900
37.
37. D. Sec, T. Porenta, M. Ravnik, and S. Zumer, Soft Matter 8, 1198211988 (2012).
http://dx.doi.org/10.1039/c2sm27048j
38.
38. M. Rosenthal, G. Portale, M. Burghammer, G. Bar, E. T. Samulski, and D. A. Ivanov, Macromolecules 45, 74547460 (2012).
http://dx.doi.org/10.1021/ma301446t
39.
39. P. J. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Science Publications, Oxford, 1995).
40.
40. A. Boudet, M. Mitov, C. Bourgerette, T. Ondarcuhu, and R. Coratger, Ultramicroscopy 88, 219229 (2001).
http://dx.doi.org/10.1016/S0304-3991(01)00087-0
41.
41. G. Tkachenko and E. Brasselet, Phys. Rev. Lett. 111, 033605 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.033605
42.
42. Y. Arita, M. Mazilu, and K. Dholakia, Nat. Commun. 4, 23742377 (2013).
http://dx.doi.org/10.1038/ncomms3374
43.
43. M. Mijalkov and G. Volpe, Soft Matter 9, 63766381 (2013).
http://dx.doi.org/10.1039/c3sm27923e
44.
44. D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, and J. Bibette, Nature (London) 455, 380382 (2008).
http://dx.doi.org/10.1038/nature07237
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4863837
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4863837
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4863837
2014-02-05
2014-08-21

Abstract

The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4863837.html;jsessionid=a6rr8gpt29imf.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4863837&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-organized internal architectures of chiral micro-particles
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4863837
10.1063/1.4863837
SEARCH_EXPAND_ITEM