Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature (London) 437, 1334 (2005).
2. S. Takeoka, K. Toshikiyo, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 61, 15988 (2000).
3. H.-C. Weissker, N. Ning, F. Bechstedt, and H. Vach, Phys. Rev. B 83, 125413 (2011).
4. A. Minnich, H. Lee, X. Wang, G. Joshi, M. Dresselhaus, Z. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2009).
5. C. B. Vining, W. Laskow, J. O. Hanson, R. R. Van der Beck, and P. D. Gorsuch, J. Appl. Phys. 69, 4333 (1991).
6. D. M. Rowe, V. S. Shukla, and N. Savvides, Nature (London) 290, 765 (1981).
7. G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. Dresselhaus, G. Chen, and Z. Ren, Phys. Rev. Lett. 102, 196803 (2009).
8. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).
9. S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar, and R. C. Budhani, Appl. Phys. Lett. 101, 213902 (2012).
10. D. Chrastina, S. Cecchi, J. P. Hague, J. Frigerio, A. Samarelli, L. Ferre-Llin, D. J. Paul, E. Müller, T. Etzelstorfer, J. Stangl, and G. Isella, Thin Solid Films 543, 153 (2013).
11. H. U. Chino, Y. O. Kamoto, T. K. Awahara, and J. M. Orimoto, Jpn. J. Appl. Phys. 39, 1675 (2000).
12. L. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
13. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).
14. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).
15. F. Erogbogbo, T. Liu, N. Ramadurai, P. Tuccarione, L. Lai, M. T. Swihart, and P. N. Prasad, ACS Nano 5, 7950 (2011).
16. K. U. Joshi, D. Kabiraj, A. M. Narsale, D. K. Avasthi, T. N. Warang, and D. C. Kothari, Surf. Coat. Technol. 203, 2482 (2009).
17. L. Mangolini, E. Thimsen, and U. R. Kortshagen, Nano Lett. 5, 655 (2005).
18. X. D. Pi and U. R. Kortshagen, Nanotechnology 20, 295602 (2009).
19. B. Abeles, D. Beers, G. Cody, and J. Dismukes, Phys. Rev. 125, 44 (1962).
20. J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, J. Appl. Phys. 35, 2899 (1964).
21. A. R. Stegner, R. N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, and M. S. Brandt, Phys. Rev. B 80, 165326 (2009).
22. X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. R. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).
23.See supplementary material at for detailed experimental methods and characterization procedures, FTIR spectra of P- and B-doped SiGe NCs, Raman spectra of Si and SiGe NCs, and a real-time video of rapid NC deposition. [Supplementary Material]
24. D. J. Norris, A. L. Efros, and S. C. Erwin, Science 319, 1776 (2008).
25. S. Kobayashi, M. Iizuka, T. Aoki, N. Mikoshiba, M. Sakuraba, T. Matsuura, and J. Murota, J. Appl. Phys. 86, 5480 (1999).
26. J. Nützel, M. Holzmann, P. Schittenhelm, and G. Abstreiter, Appl. Surf. Sci. 102, 98 (1996).
27. A. Fissel, E. Bugiel, C. R. Wang, and H. J. Osten, J. Cryst. Growth 290, 392 (2006).
28. R. Lechner, A. R. Stegner, R. N. Pereira, R. Dietmueller, M. S. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, J. Appl. Phys. 104, 053701 (2008).
29. Z. C. Holman, U. R. Kortshagen, Nanotechnology 21, 335302 (2010).

Data & Media loading...


Article metrics loading...



Alloyed silicon-germanium (SiGe) nanostructures are the topic of renewed research due to applications in modern optoelectronics and high-temperature thermoelectric materials. However, common techniques for producing nanostructured SiGe focus on bulk processing; therefore little is known of the physical properties of SiGe nanocrystals (NCs) synthesized from molecular precursors. In this letter, we synthesize and deposit thin films of doped SiGe NCs using a single, flow-through nonthermal plasma reactor and inertial impaction. Using x-ray and vibrational analysis, we show that the SiGe NC structure appears truly alloyed for Si Ge for 0.16 < x < 0.24, and quantify the atomic dopant incorporation within the SiGe NC films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd