1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Boron- and phosphorus-doped silicon germanium alloy nanocrystals—Nonthermal plasma synthesis and gas-phase thin film deposition
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4865158
1.
1. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature (London) 437, 1334 (2005).
http://dx.doi.org/10.1038/nature04204
2.
2. S. Takeoka, K. Toshikiyo, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 61, 15988 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15988
3.
3. H.-C. Weissker, N. Ning, F. Bechstedt, and H. Vach, Phys. Rev. B 83, 125413 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125413
4.
4. A. Minnich, H. Lee, X. Wang, G. Joshi, M. Dresselhaus, Z. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155327
5.
5. C. B. Vining, W. Laskow, J. O. Hanson, R. R. Van der Beck, and P. D. Gorsuch, J. Appl. Phys. 69, 4333 (1991).
http://dx.doi.org/10.1063/1.348408
6.
6. D. M. Rowe, V. S. Shukla, and N. Savvides, Nature (London) 290, 765 (1981).
http://dx.doi.org/10.1038/290765a0
7.
7. G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. Dresselhaus, G. Chen, and Z. Ren, Phys. Rev. Lett. 102, 196803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.196803
8.
8. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).
http://dx.doi.org/10.1021/nl8026795
9.
9. S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar, and R. C. Budhani, Appl. Phys. Lett. 101, 213902 (2012).
http://dx.doi.org/10.1063/1.4768297
10.
10. D. Chrastina, S. Cecchi, J. P. Hague, J. Frigerio, A. Samarelli, L. Ferre-Llin, D. J. Paul, E. Müller, T. Etzelstorfer, J. Stangl, and G. Isella, Thin Solid Films 543, 153 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.01.002
11.
11. H. U. Chino, Y. O. Kamoto, T. K. Awahara, and J. M. Orimoto, Jpn. J. Appl. Phys. 39, 1675 (2000).
http://dx.doi.org/10.1143/JJAP.39.1675
12.
12. L. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
13.
13. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).
http://dx.doi.org/10.1021/nl201206d
14.
14. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).
http://dx.doi.org/10.1021/nl3003045
15.
15. F. Erogbogbo, T. Liu, N. Ramadurai, P. Tuccarione, L. Lai, M. T. Swihart, and P. N. Prasad, ACS Nano 5, 7950 (2011).
http://dx.doi.org/10.1021/nn2023304
16.
16. K. U. Joshi, D. Kabiraj, A. M. Narsale, D. K. Avasthi, T. N. Warang, and D. C. Kothari, Surf. Coat. Technol. 203, 2482 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.02.042
17.
17. L. Mangolini, E. Thimsen, and U. R. Kortshagen, Nano Lett. 5, 655 (2005).
http://dx.doi.org/10.1021/nl050066y
18.
18. X. D. Pi and U. R. Kortshagen, Nanotechnology 20, 295602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/29/295602
19.
19. B. Abeles, D. Beers, G. Cody, and J. Dismukes, Phys. Rev. 125, 44 (1962).
http://dx.doi.org/10.1103/PhysRev.125.44
20.
20. J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, J. Appl. Phys. 35, 2899 (1964).
http://dx.doi.org/10.1063/1.1713126
21.
21. A. R. Stegner, R. N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, and M. S. Brandt, Phys. Rev. B 80, 165326 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165326
22.
22. X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. R. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).
http://dx.doi.org/10.1063/1.2897291
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4865158 for detailed experimental methods and characterization procedures, FTIR spectra of P- and B-doped SiGe NCs, Raman spectra of Si and SiGe NCs, and a real-time video of rapid NC deposition. [Supplementary Material]
24.
24. D. J. Norris, A. L. Efros, and S. C. Erwin, Science 319, 1776 (2008).
http://dx.doi.org/10.1126/science.1143802
25.
25. S. Kobayashi, M. Iizuka, T. Aoki, N. Mikoshiba, M. Sakuraba, T. Matsuura, and J. Murota, J. Appl. Phys. 86, 5480 (1999).
http://dx.doi.org/10.1063/1.371549
26.
26. J. Nützel, M. Holzmann, P. Schittenhelm, and G. Abstreiter, Appl. Surf. Sci. 102, 98 (1996).
http://dx.doi.org/10.1016/0169-4332(96)00029-3
27.
27. A. Fissel, E. Bugiel, C. R. Wang, and H. J. Osten, J. Cryst. Growth 290, 392 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.02.009
28.
28. R. Lechner, A. R. Stegner, R. N. Pereira, R. Dietmueller, M. S. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, J. Appl. Phys. 104, 053701 (2008).
http://dx.doi.org/10.1063/1.2973399
29.
29. Z. C. Holman, U. R. Kortshagen, Nanotechnology 21, 335302 (2010).
http://dx.doi.org/10.1088/0957-4484/21/33/335302
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4865158
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4865158
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4865158
2014-02-12
2014-10-22

Abstract

Alloyed silicon-germanium (SiGe) nanostructures are the topic of renewed research due to applications in modern optoelectronics and high-temperature thermoelectric materials. However, common techniques for producing nanostructured SiGe focus on bulk processing; therefore little is known of the physical properties of SiGe nanocrystals (NCs) synthesized from molecular precursors. In this letter, we synthesize and deposit thin films of doped SiGe NCs using a single, flow-through nonthermal plasma reactor and inertial impaction. Using x-ray and vibrational analysis, we show that the SiGe NC structure appears truly alloyed for Si Ge for 0.16 < x < 0.24, and quantify the atomic dopant incorporation within the SiGe NC films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4865158.html;jsessionid=4c9jmcmepb00d.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4865158&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Boron- and phosphorus-doped silicon germanium alloy nanocrystals—Nonthermal plasma synthesis and gas-phase thin film deposition
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4865158
10.1063/1.4865158
SEARCH_EXPAND_ITEM