1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4865160
1.
1. A. M. Glazer, Acta Crystallogr., Sect. A 31, 756 (1975).
http://dx.doi.org/10.1107/S0567739475001635
2.
2. D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02556.x
3.
3. M. Johnsson and P. Lemmens, J. Phys.: Condens. Matter 20, 264001 (2008).
http://dx.doi.org/10.1088/0953-8984/20/26/264001
4.
4. D. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J. M. Triscone, Annu. Rev. Mater. Res. 37, 589 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.061206.113016
5.
5. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature (London) 452, 732 (2008).
http://dx.doi.org/10.1038/nature06817
6.
6. S. J. May, P. J. Ryan, J. L. Robertson, J. W. Kim, T. S. Santos, E. Karapetrova, J. L. Zarestky, X. Zhai, S. G. E. te Velthuis, J. N. Eckstein, S. D. Bader, and A. Bhattacharya, Nat. Mater. 8, 892 (2009).
http://dx.doi.org/10.1038/nmat2557
7.
7. S. J. May, C. R. Smith, J.-W. Kim, E. Karapetrova, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 83, 153411 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.153411
8.
8. J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011).
http://dx.doi.org/10.1002/adma.201101152
9.
9. J. M. Rondinelli, S. J. May, and J. W. Freeland, MRS Bull. 37, 261 (2012).
http://dx.doi.org/10.1557/mrs.2012.49
10.
10. P. V. Balachandran and J. M. Rondinelli, Phys. Rev. B 88, 054101 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.054101
11.
11. M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. Blank, Adv. Mater. 21, 1665 (2009).
http://dx.doi.org/10.1002/adma.200801448
12.
12. H. Chen, A. M. Kolpak, and S. Ismail-Beigi, Adv. Mater. 22, 2881 (2010).
http://dx.doi.org/10.1002/adma.200903800
13.
13. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79, 081405(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081405
14.
14. A. Hatt and N. Spaldin, Phys. Rev. B 82, 195402 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195402
15.
15. A. N. Morozovska, E. A. Eliseev, S. V. Kalinin, L. Qing Chen, and V. Gopalan, Appl. Phys. Lett. 100, 142902 (2012).
http://dx.doi.org/10.1063/1.3701152
16.
16. A. N. Morozovska, E. A. Eliseev, S. L. Bravina, A. Y. Borisevich, and S. V. Kalinin, J. Appl. Phys. 112, 064111 (2012).
http://dx.doi.org/10.1063/1.4752397
17.
17. R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. 102, 107602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.107602
18.
18. H. Lehnert, H. Boysen, J. Schneider, F. Frey, D. Hohlwein, P. Radaelli, and H. Ehrenberg, Z. Kristallogr. 215, 536 (2000).
http://dx.doi.org/10.1524/zkri.2000.215.9.536
19.
19. K. Müller, W. Berlinger, and F. Waldner, Phys. Rev. Lett. 21, 814 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.814
20.
20. A. M. Glazer, Acta Crystallogr., Sect. B 28, 3384 (1972).
http://dx.doi.org/10.1107/S0567740872007976
21.
21. H. Lehnert, H. Boysen, P. Dreier, and Y. Yu, Z. Kristallogr. 215, 145 (2000).
http://dx.doi.org/10.1524/zkri.2000.215.3.145
22.
22. S. S. A. Seo, Z. Marton, W. S. Choi, G. W. J. Hassink, D. H. A. Blank, H. Y. Hwang, T. W. Noh, T. Egami, and H. N. Lee, Appl. Phys. Lett. 95, 082107 (2009).
http://dx.doi.org/10.1063/1.3213390
23.
23. W. S. Choi, C. M. Rouleau, S. S. A. Seo, Z. Luo, H. Zhou, T. T. Fister, J. A. Eastman, P. H. Fuoss, D. D. Fong, J. Z. Tischler, G. Eres, M. F. Chisholm, and H. N. Lee, Adv. Mater. 24, 6423 (2012).
http://dx.doi.org/10.1002/adma.201202691
24.
24. Y. Yacoby, M. Sowwan, E. Stern, J. O. Cross, D. Brewe, R. Pindak, J. Pitney, E. M. Dufresne, and R. Clarke, Nat. Mater. 1, 99 (2002).
http://dx.doi.org/10.1038/nmat735
25.
25. D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, C. Thompson, R. Clarke, R. Pindak, and E. A. Stern, Phys. Rev. B 71, 144112 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144112
26.
26. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99, 155502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155502
27.
27. H. Zhou, Y. Yacoby, V. Y. Butko, G. Logvenov, I. Bozovic, and R. Pindak, Proc. Natl. Acad. Sci. U.S.A. 107, 8103 (2010).
http://dx.doi.org/10.1073/pnas.0914702107
28.
28. R. Yamamoto, C. Bell, Y. Hikita, H. Y. Hwang, H. Nakamura, T. Kimura, and Y. Wakabayashi, Phys. Rev. Lett. 107, 036104 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.036104
29.
29.See supplemental material at http://dx.doi.org/10.1063/1.4865160 for further details on data taken from the 3 unit-cell-thick film, details on COBRA analysis, and half-order peak fitting. [Supplementary Material]
30.
30. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fête, S. J. Leake, S. A. Pauli, P. R. Willmott, and M. Stengel, Phys. Rev. Lett. 107, 056102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056102
31.
31. Y. Wakabayashi, H. Sawa, M. Nakamura, M. Izumi, and K. Miyano, Phys. Rev. B 69, 144414 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.144414
32.
32. H. Rotella, U. Lüders, P. E. Janolin, V. H. Dao, D. Chateigner, R. Feyerherm, E. Dudzik, and W. Prellier, Phys. Rev. B 85, 184101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184101
33.
33. S. May, J.-W. Kim, J. Rondinelli, E. Karapetrova, N. Spaldin, A. Bhattacharya, and P. Ryan, Phys. Rev. B 82, 014110 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014110
34.
34. T. F. Zhou, G. Li, X. G. Li, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 90, 042512 (2007).
http://dx.doi.org/10.1063/1.2432292
35.
35. S. W. Jin, G. Y. Gao, Z. Huang, Z. Z. Yin, X. Zheng, and W. Wu, Appl. Phys. Lett. 92, 261901 (2008).
http://dx.doi.org/10.1063/1.2952764
36.
36. A. Vailionis, H. Boschker, W. Siemons, E. Houwman, D. Blank, G. Rijnders, and G. Koster, Phys. Rev. B 83, 064101 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064101
37.
37. N. Farag, M. Bobeth, W. Pompe, A. E. Romanov, and J. S. Speck, Phys. Status Solidi A 202, R44 (2005).
http://dx.doi.org/10.1002/pssa.200510006
38.
38. M. Sowwan, Y. Yacoby, J. Cross, D. A. Walko, R. Clarke, R. Pindak, and E. A. Stern, Phys. Rev. B 66, 205311 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.205311
39.
39. Y. Yacoby, M. Sowwan, E. Stern, J. Cross, D. Brewe, R. Pindak, J. Pitney, E. Dufresne, and R. Clarke, Physica B 336, 39 (2003).
http://dx.doi.org/10.1016/S0921-4526(03)00267-9
40.
40. F. He, B. Wells, and S. Shapiro, Phys. Rev. Lett. 94, 176101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176101
41.
41. P. Woodward, Acta Crystallogr., Sect. B 53, 32 (1997).
http://dx.doi.org/10.1107/S0108768196010713
42.
42. R. L. Johnson-Wilke, D. S. Tinberg, C. B. Yeager, Y. Han, I. M. Reaney, I. Levin, D. D. Fong, T. T. Fister, and S. Trolier-Mckinstry, Phys. Rev. B 84, 134114 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.134114
43.
43. A. Borisevich, H. Chang, M. Huijben, M. Oxley, S. Okamoto, M. Niranjan, J. Burton, E. Tsymbal, Y. Chu, P. Yu, R. Ramesh, S. Kalinin, and S. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.087204
44.
44. J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227203
45.
45. S. Pauli, S. Leake, B. Delley, M. Björck, C. Schneider, C. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P. Willmott, Phys. Rev. Lett. 106, 036101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036101
46.
46. C. Cantoni, J. Gazquez, F. Miletto Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. S. di Uccio, and P. Perna, Adv. Mater. 24, 3952 (2012).
http://dx.doi.org/10.1002/adma.201200667
47.
47. M. Salluzzo, S. Gariglio, X. Torrelles, Z. Ristic, R. Di Capua, J. Drnec, M. M. Sala, G. Ghiringhelli, R. Felici, and N. B. Brookes, Adv. Mater. 25, 2333 (2013).
http://dx.doi.org/10.1002/adma.201204555
48.
48. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
49.
49. N. C. Bristowe, P. B. Littlewood, and E. Artacho, Phys. Rev. B 83, 205405 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.205405
50.
50. Y. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, Nat. Commun. 2, 494 (2011).
http://dx.doi.org/10.1038/ncomms1501
51.
51. Y. Chen, N. Pryds, J. E. Kleibeuker, G. Koster, J. Sun, E. Stamate, B. Shen, G. Rijnders, and S. Linderoth, Nano Lett. 11, 3774 (2011).
http://dx.doi.org/10.1021/nl201821j
52.
52. A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, L.-Q. Chen, and V. Gopalan, Phys. Rev. B 85, 094107 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.094107
53.
53. N. C. Plumb, M. Kobayashi, M. Salluzzo, E. Razzoli, C. Matt, V. N. Strocov, K. J. Zhou, C. Monney, T. Schmitt, M. Shi, J. Mesot, L. Patthey, and M. Radovic, preprint arXiv:1304.5948v1 (2013).
54.
54. R. I. Thomson, J. M. Rawson, C. J. Howard, S. Turczynski, D. A. Pawlak, T. Lukasiewicz, and M. A. Carpenter, Phys. Rev. B 82, 214111 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.214111
55.
55. A. Annadi, Q. Zhang, X. R. Wang, N. Tuzla, K. Gopinadhan, W. M. , A. R. Barman, Z. Q. Liu, A. Srivastava, S. Saha, Y. L. Zhao, S. W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan, and Ariando, Nat. Commun. 4, 1838 (2013).
http://dx.doi.org/10.1038/ncomms2804
56.
56. B. Kalisky, J. A. Bert, B. B. Klopfer, C. Bell, H. K. Sato, M. Hosoda, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Commun. 3, 922 (2012).
http://dx.doi.org/10.1038/ncomms1931
57.
57. M. Fratini, N. Poccia, A. Ricci, G. Campi, M. Burghammer, G. Aeppli, and A. Bianconi, Nature (London) 466, 841 (2010).
http://dx.doi.org/10.1038/nature09260
58.
58. N. Poccia, A. Ricci, G. Campi, M. Fratini, A. Puri, D. Di Gioacchino, A. Marcelli, M. Reynolds, M. Burghammer, N. L. Saini, G. Aeppli, and A. Bianconi, Proc. Natl. Acad. Sci. U. S. A. 109, 15685 (2012).
http://dx.doi.org/10.1073/pnas.1208492109
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4865160
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4865160
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4865160
2014-02-11
2014-07-28

Abstract

Many complex oxides display an array of structural instabilities often tied to altered electronic behavior. For oxide heterostructures, several different interfacial effects can dramatically change the nature of these instabilities. Here, we investigate LaAlO/SrTiO (001) heterostructures using synchrotron x-ray scattering. We find that when cooling from high temperature, LaAlO transforms from the to the phase due to strain. Furthermore, the first 4 unit cells of the film adjacent to the substrate exhibit a gradient in rotation angle that can couple with polar displacements in films thinner than that necessary for 2D electron gas formation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4865160.html;jsessionid=5n4sg3j0hija0.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4865160&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4865160
10.1063/1.4865160
SEARCH_EXPAND_ITEM