1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Focused-ion-beam induced damage in thin films of complex oxide BiFeO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4866051
1.
1. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small 1, 924 (2005).
http://dx.doi.org/10.1002/smll.200500113
2.
2. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM sample preparation and FIB-induced damage,” MRS Bull. 32, 400407 (2007).
http://dx.doi.org/10.1557/mrs2007.63
3.
3. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams (Springer, Verlag, 2005).
4.
4. S. Rubanov and P. Munroe, “FIB-induced damage in silicon,” J. Microsc. 214, 213 (2004).
http://dx.doi.org/10.1111/j.0022-2720.2004.01327.x
5.
5. L. A. Giannuzzi, R. Geurts, and J. Ringnalda, “2 keV Ga+ FIB milling for reducing amorphous damage in silicon,” Microsc. Microanal. 11, 828829 (2005).
http://dx.doi.org/10.1017/S1431927605507797
6.
6. J. R. Michael, “Gallium phase formation in Cu during 30 kV Ga+ FIB milling,” Microsc. Microanal. 12, 1248 (2006).
http://dx.doi.org/10.1017/S1431927606062015
7.
7. L. Balcells, L. Abad, and H. Rojas, “Material damage induced by nanofabrication processes in manganite thin films,” Nanotechnology 19, 135307 (2008).
http://dx.doi.org/10.1088/0957-4484/19/13/135307
8.
8. I. Pallecchi, L. Pellegrino, E. Bellingeri, A. S. Siri, D. Marré, and G. C. Gazzadi, “Investigation of FIB irradiation damage in La0.7Sr0.3MnO3 thin films,” J. Magn. Magn. Mat. 320, 19451951 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.02.171
9.
9. A. Schilling, T. Adams, R. M. Bowman, and J. M. Gregg, “Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures,” Nanotechnology 18, 035301 (2007).
http://dx.doi.org/10.1088/0957-4484/18/3/035301
10.
10. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
11.
11. L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, “Multiferroics and magnetoelectrics: Thin films and nanostructures,” J. Phys.: Condens. Matter 20, 434220 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434220
12.
12. G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Adv. Mater. 21, 24632485 (2009).
http://dx.doi.org/10.1002/adma.200802849
13.
13. J. Budai, W. Liu, J. Tischler, Z. Pan, and D. Norton, “Polychromatic X-ray micro-and nanodiffraction for spatially-resolved structural studies,” Thin Solid Films 516, 8013 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.04.045
14.
14. H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, “Evidence for room-temperature multiferroicity in a compound with a giant axial ratio,” Phys. Rev. Lett. 102, 217603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.217603
15.
15. W. Siemons, M. D. Biegalski, J. H. Nam, and H. M. Christen, “Temperature-driven structural phase transition in tetragonal-like BiFeO3,” Appl. Phys. Exp. 4, 095801 (2011).
http://dx.doi.org/10.1143/APEX.4.095801
16.
16. G. J. MacDougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto, and S. E. Nagler, “Antiferromagnetic transitions in tetragonal-like BiFeO3,” Phys. Rev. B. 85, 100406 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.100406
17.
17. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. A. Ramesh, “Strain-driven morphotropic phase boundary in BiFeO3,” Science 326, 977 (2009).
http://dx.doi.org/10.1126/science.1177046
18.
18. C. Beekman, W. Siemons, T. Z. Ward, M. Chi, J. Howe, M. D. Biegalski, N. Balke, P. Maksymovych, A. K. Farrar, J. B. Romero, P. Gao, X. Q. Pan, D. A. Tenne, and H. M. Christen, Adv. Mat. 25, 5561 (2013).
http://dx.doi.org/10.1002/adma.201302066
19.
19. J. Melngailis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B5, 469 (1987).
http://dx.doi.org/10.1116/1.583937
20.
20. M. Tachibana, T. Kolodiazhnyi, and E. Takayama-Muromachi, “Thermal conductivity of perovskite ferroelectrics,” Appl. Phys. Lett. 93, 092902 (2008).
http://dx.doi.org/10.1063/1.2978072
21.
21. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nat. Nanotechnol. 3, 429433 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
22.
22. C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, “Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films,” Nat. Mater. 8, 485493 (2009).
http://dx.doi.org/10.1038/nmat2432
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4866051
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4866051
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4866051
2014-02-27
2014-11-28

Abstract

An unexpected, strong deterioration of crystal quality is observed in epitaxial perovskite BiFeO films in which microscale features have been patterned by focused-ion-beam (FIB) milling. Specifically, synchrotron x-ray microdiffraction shows that the damaged region extends to tens of m, but does not result in measureable changes to morphology or stoichiometry. Therefore, this change would go undetected with standard laboratory equipment, but can significantly influence local material properties and must be taken into account when using a FIB to manufacture nanostructures. The damage is significantly reduced when a thin metallic layer is present on top of the film during the milling process, clearly indicating that the reduced crystallinity is caused by ion beam induced charging.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4866051.html;jsessionid=npe0tmof0i22.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4866051&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Focused-ion-beam induced damage in thin films of complex oxide BiFeO3
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4866051
10.1063/1.4866051
SEARCH_EXPAND_ITEM