Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small 1, 924 (2005).
2. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM sample preparation and FIB-induced damage,” MRS Bull. 32, 400407 (2007).
3. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams (Springer, Verlag, 2005).
4. S. Rubanov and P. Munroe, “FIB-induced damage in silicon,” J. Microsc. 214, 213 (2004).
5. L. A. Giannuzzi, R. Geurts, and J. Ringnalda, “2 keV Ga+ FIB milling for reducing amorphous damage in silicon,” Microsc. Microanal. 11, 828829 (2005).
6. J. R. Michael, “Gallium phase formation in Cu during 30 kV Ga+ FIB milling,” Microsc. Microanal. 12, 1248 (2006).
7. L. Balcells, L. Abad, and H. Rojas, “Material damage induced by nanofabrication processes in manganite thin films,” Nanotechnology 19, 135307 (2008).
8. I. Pallecchi, L. Pellegrino, E. Bellingeri, A. S. Siri, D. Marré, and G. C. Gazzadi, “Investigation of FIB irradiation damage in La0.7Sr0.3MnO3 thin films,” J. Magn. Magn. Mat. 320, 19451951 (2008).
9. A. Schilling, T. Adams, R. M. Bowman, and J. M. Gregg, “Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures,” Nanotechnology 18, 035301 (2007).
10. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719 (2003).
11. L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, “Multiferroics and magnetoelectrics: Thin films and nanostructures,” J. Phys.: Condens. Matter 20, 434220 (2008).
12. G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Adv. Mater. 21, 24632485 (2009).
13. J. Budai, W. Liu, J. Tischler, Z. Pan, and D. Norton, “Polychromatic X-ray micro-and nanodiffraction for spatially-resolved structural studies,” Thin Solid Films 516, 8013 (2008).
14. H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, “Evidence for room-temperature multiferroicity in a compound with a giant axial ratio,” Phys. Rev. Lett. 102, 217603 (2009).
15. W. Siemons, M. D. Biegalski, J. H. Nam, and H. M. Christen, “Temperature-driven structural phase transition in tetragonal-like BiFeO3,” Appl. Phys. Exp. 4, 095801 (2011).
16. G. J. MacDougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto, and S. E. Nagler, “Antiferromagnetic transitions in tetragonal-like BiFeO3,” Phys. Rev. B. 85, 100406 (2012).
17. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. A. Ramesh, “Strain-driven morphotropic phase boundary in BiFeO3,” Science 326, 977 (2009).
18. C. Beekman, W. Siemons, T. Z. Ward, M. Chi, J. Howe, M. D. Biegalski, N. Balke, P. Maksymovych, A. K. Farrar, J. B. Romero, P. Gao, X. Q. Pan, D. A. Tenne, and H. M. Christen, Adv. Mat. 25, 5561 (2013).
19. J. Melngailis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B5, 469 (1987).
20. M. Tachibana, T. Kolodiazhnyi, and E. Takayama-Muromachi, “Thermal conductivity of perovskite ferroelectrics,” Appl. Phys. Lett. 93, 092902 (2008).
21. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nat. Nanotechnol. 3, 429433 (2008).
22. C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, “Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films,” Nat. Mater. 8, 485493 (2009).

Data & Media loading...


Article metrics loading...



An unexpected, strong deterioration of crystal quality is observed in epitaxial perovskite BiFeO films in which microscale features have been patterned by focused-ion-beam (FIB) milling. Specifically, synchrotron x-ray microdiffraction shows that the damaged region extends to tens of m, but does not result in measureable changes to morphology or stoichiometry. Therefore, this change would go undetected with standard laboratory equipment, but can significantly influence local material properties and must be taken into account when using a FIB to manufacture nanostructures. The damage is significantly reduced when a thin metallic layer is present on top of the film during the milling process, clearly indicating that the reduced crystallinity is caused by ion beam induced charging.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd