1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4866052
1.
1. J. Gleiter, Acta Mater. 48, 1 (2000).
http://dx.doi.org/10.1016/S1359-6454(99)00285-2
2.
2. F. Delogu, E. Arca, G. Mulas, G. Manai, and I. Shvets, Phys. Rev. B 78, 024103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.024103
3.
3. R. Ferrando, J. Jellinek, and L. Johnston, Chem. Rev. 108, 845 (2008).
http://dx.doi.org/10.1021/cr040090g
4.
4. A. Aguado and J. M. Lopez, J. Chem. Phys. 135, 134305 (2011).
http://dx.doi.org/10.1063/1.3645105
5.
5. V. Levitas and K. Samani, Nature Commun. 2, 1275 (2011).
http://dx.doi.org/10.1038/ncomms1275
6.
6. P. Puri and V. Yang, J. Phys. Chem. C 111, 11776 (2007).
http://dx.doi.org/10.1021/jp0724774
7.
7. S. L. Lai, J. R. A. Carlsson, and L. H. Allen, Appl. Phys. Lett. 72, 1098 (1998).
http://dx.doi.org/10.1063/1.120946
8.
8. B. X. Liu, W. S. Lai, and Q. Zhang, Mater. Sci. Eng., R 29, 1 (2000).
http://dx.doi.org/10.1016/S0927-796X(00)00016-4
9.
9. P. Duwez, R. H. Willens, and W. Klement, J. Appl. Phys. 31, 1136 (1960)
http://dx.doi.org/10.1063/1.1735777
10.
10. S. Mader, A. S. Nowich, and H. Widmer, Acta Metall. 15, 203 (1967).
http://dx.doi.org/10.1016/0001-6160(67)90193-9
11.
11. H. Chen and J. M. Zuo, Acta Mater. 55, 1617 (2007).
http://dx.doi.org/10.1016/j.actamat.2006.10.036
12.
12. M. , Tchaplyguine, T. Andersson, C. H. Zhang, and O. Bjoreneholm, J. Chem. Phys. 138, 104303 (2013).
http://dx.doi.org/10.1063/1.4794045
13.
13. M. Schick, G. Ceballos, T. Pelzer, J. Schafer, G. Rangelov, J. Stober, and K. Wandelt, J. Vac. Sci. Technol. A12, 1795 (1994).
http://dx.doi.org/10.1116/1.579008
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.4866052 for the additional details. [Supplementary Material]
15.
15. E. Sutter, P. Sutter, and Y. M. Zhu, Nano Lett. 5, 2092 (2005).
http://dx.doi.org/10.1021/nl051498b
16.
16. S. J. Pennycook and D. E. Jesson, Phys. Rev. Lett. 64, 938 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.938
17.
17. L. F. Allard, M. Flytzani-Stephanopoulos, and S. H. Overbury, Microsc. Microanal. 16, 375 (2010).
http://dx.doi.org/10.1017/S1431927610013486
18.
18. S. D. Bunge, T. J. Boyle, and T. J. Headley, Nano Lett. 3, 901 (2003).
http://dx.doi.org/10.1021/nl034200v
19.
19. P. L. Williams, Y. Mishin, and J. C. Hamilton, Modell. Simul. Mater. Sci. Eng. 14, 817 (2006).
http://dx.doi.org/10.1088/0965-0393/14/5/002
20.
20. S. M. Foiles, private communication (2012).
21.
21. M. Chandross, “Energetics of the Formation of Cu-Ag Core-Shell Nanoparticles” (unpublished).
22.
22. P. Bacher, P. Wynblatt, and S. M. Foiles, Acta Metall. Mater. 39, 2681 (1991).
http://dx.doi.org/10.1016/0956-7151(91)90084-E
23.
23. Y. W. Lee and H. I. Aaronson, Acta Metall. 28, 539 (1980).
http://dx.doi.org/10.1016/0001-6160(80)90143-1
24.
24. J. Yang, W. Hu, Y. Wu, and X. Dai, Surf. Sci. 606, 971980 (2012).
http://dx.doi.org/10.1016/j.susc.2012.02.017
25.
25. J. Yang, W. Hu, Y. Wu, and X. Dai, Cryst. Growth Des. 12, 2978 (2012).
http://dx.doi.org/10.1021/cg300195z
26.
26. A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck, and R. L. Johnston, J. Chem. Phys. 122, 194308 (2005).
http://dx.doi.org/10.1063/1.1898223
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4866052
Loading
/content/aip/journal/aplmater/2/2/10.1063/1.4866052
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4866052
2014-02-18
2014-11-28

Abstract

Using scanning transmission electron microscopy heating experiments, we observed the formation of a 3-dimensional (3D) epitaxial Cu-core and Ag-shell equilibrium structure of a Cu-Ag nanoalloy. The structure was formed during the thermal interaction of Cu(∼12 nm) and Ag NPs(∼6 nm) at elevated temperatures (150–300 °C) by the Ag NPs initially wetting the Cu NP along its {111} surfaces at one or multiple locations forming epitaxial Ag/Cu (111) interfaces, followed by Ag atoms diffusing along the Cu surface. This phenomenon was confirmed through Monte Carlo simulations to be a nanoscale effect related to the large surface-to-volume ratio of the NPs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4866052.html;jsessionid=7sku709kfv06c.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4866052&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4866052
10.1063/1.4866052
SEARCH_EXPAND_ITEM