1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dramatically enhanced self-assembly of GeSi quantum dots with superior photoluminescence induced by the substrate misorientation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/2/10.1063/1.4866356
1.
1. K. L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE 95, 1866 (2007).
http://dx.doi.org/10.1109/JPROC.2007.900971
2.
2. G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli, O. G. Schmidt, and S. De Franceschi, Nat. Nanotechnol. 5, 458 (2010).
http://dx.doi.org/10.1038/nnano.2010.84
3.
3. T. Tayagaki, N. Usami, W. Pan, Y. Hoshi, K. Ooi, and Y. Kanemitsu, Appl. Phys. Lett. 101, 133905 (2012).
http://dx.doi.org/10.1063/1.4756895
4.
4. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990);
http://dx.doi.org/10.1103/PhysRevLett.64.1943
4.Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1020
5.
5. J. Tersoff and F. K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3570
6.
6. G. H. Lu and F. Liu, Phys. Rev. Lett. 94, 176103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176103
7.
7. J. L. Gray , R. Hull, C. H. Lam, P. Sutter, J. Means, and J. A. Floro, Phys. Rev. B 72, 155323 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.155323
8.
8. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola , H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Phys. Rev. B 80, 205321 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205321
9.
9. M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schaffler, T. Fromherz, and G. Bauer, J. Appl. Phys. 109, 123505 (2011).
http://dx.doi.org/10.1063/1.3594693
10.
10. Z. Zhong and G. Bauer, Appl. Phys. Lett. 84, 1922 (2004).
http://dx.doi.org/10.1063/1.1664014
11.
11. Z. Zhong, W. Schwinger, F. Schaffler, G. Bauer, G. Vastola, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 98, 176102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.176102
12.
12. D. Grutzmacher, T. Fromherz, C. Dais, J. Stangl, E. Muller, Y. Ekinci, H. H. Solak, H. Sigg , R. T. Lechner, E. Wintersberger, S. Birner, V. Holy, and G. Bauer, Nano Lett. 7, 3150 (2007).
http://dx.doi.org/10.1021/nl0717199
13.
13. I. Berbezier, A. Ronda, F. Volpi, and A. Portavoce, Surf. Sci. 531, 231 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00488-6
14.
14. P. D. Szkutnik, A. Sgarlata, A. Balzarotti, N. Motta, A. Ronda, and I. Berbezier, Phys. Rev. B 75, 033305 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.033305
15.
15. B. J. Spencer and J. Tersoff, Appl. Phys. Lett. 96, 073114 (2010).
http://dx.doi.org/10.1063/1.3318256
16.
16. L. Persichetti, A. Sgarlata, M. Fanfoni, and A. Balzarotti, Phys. Rev. Lett. 104, 036104 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.036104
17.
17. Z. Zhong, H. Gong, Y. Ma, Y. Fan, and Z. Jiang, Nanoscale Res. Lett. 6, 322 (2011).
http://dx.doi.org/10.1186/1556-276X-6-322
18.
18. G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J. Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.055503
19.
19. J. Zhu, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 73, 620 (1998).
http://dx.doi.org/10.1063/1.121875
20.
20. B. J. Spencer, P. W. Voorhees, and J. Tersoff, Phys. Rev. Lett. 84, 2449 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2449
21.
21. C. Schelling, G. Springholz, and F. Schaffler, Phys. Rev. Lett. 83, 995 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.995
22.
22. B. Sanduijav, D. Scopece, D. Matei, G. Chen, F. Schäffler, L. Miglio, and G. Springholz, Phys. Rev. Lett. 109, 025505 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.025505
23.
23. V. B. Shenoy, C. V. Ciobanu, and L. B. Freund, Appl. Phys. Lett. 81, 364 (2002).
http://dx.doi.org/10.1063/1.1491611
24.
24. R. L. Schwoebel, J. Appl. Phys. 40, 614 (1969).
http://dx.doi.org/10.1063/1.1657442
25.
25. V. P. Evtikhiev, A. M. Boiko, I. V. Kudryashov, A. K. Kryganovskii, R. A. Suris, A. N. Titkov, and V. E. Tokranov, Semicond. Sci. Technol. 17, 545 (2002).
http://dx.doi.org/10.1088/0268-1242/17/6/308
26.
26. M. W. Dashiell, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 79, 2261 (2001).
http://dx.doi.org/10.1063/1.1405148
27.
27. J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 78, 1763 (2001).
http://dx.doi.org/10.1063/1.1356454
28.
28. H. Yang, Z. Tao, J. Lin, F. Lu, Z. Jiang, and Z. Zhong, Appl. Phys. Lett. 92, 111907 (2008).
http://dx.doi.org/10.1063/1.2901873
29.
29. M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, Phys. Rev. B. 60, 1504 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.1504
30.
30. M. Govoni, I. Marri, and S. Ossicini, Nat. Photo. 6, 672 (2012).
http://dx.doi.org/10.1038/nphoton.2012.206
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4866356
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

AFM images (1 × 1 m2) of surface morphology after 1.8 nm GeSi growth on miscut Si(001)/ substrates, (a) = 0.2°, (b) = 2°, (c) = 4°, (d) = 6°. The miscut direction of ⟨110⟩ and angle are denoted by the arrow and the number.

Image of FIG. 2.

Click to view

FIG. 2.

AFM images (1 × 1 m2) of surface morphology after 1 nm GeSi growth on miscut Si(001)/ substrates, (a) = 2°, (b) = 6°. The miscut direction of ⟨110⟩ and angle are denoted by the white arrow and number. The unit of color bar is nm.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The QD density, (b) the percentage of V over V the miscut angle for GeSi QDs on miscut Si(001)/ substrates. The total thickness of deposited GeSi alloy is shown in the label.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic illustration of an asymmetric-pyramid-like QDs on misuct Si(001)/ substrates, (b) the formation energy E the volume of a QD on miscut Si(001)/ ( = 0°, 0.2°, 2°, 4°, 6°) substrates, (c) the critical volume the miscut angle . The and the dashed arrow in (c) indicate the critical miscut angle, beyond which the GeSi QDs grow on misuct Si (001)/ substrates via VW growth mode rather than SK growth mode.

Image of FIG. 5.

Click to view

FIG. 5.

PL spectra of GeSi QDs with 0.9 nm Ge deposition on a miscut Si (001)/4° substrate at 30, 70 150, 200, and 300 K. The spectrum at 300 K is multiplied by a factor of 10. The integrated intensity of PL peak vs the temperature is shown in the inset, which is fit by () = (0) / [1 + (exp (−  / k) + (exp (−  / k)] (details seen in Ref. 28 ).

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/2/10.1063/1.4866356
2014-02-21
2014-04-20

Abstract

A dramatically enhanced self-assembly of GeSi quantum dots (QDs) is disclosed on slightly miscut Si (001) substrates, leading to extremely dense QDs and even a growth mode transition. The inherent mechanism is addressed in combination of the thermodynamics and the growth kinetics both affected by steps on the vicinal surface. Moreover, temperature-dependent photoluminescence spectra from dense GeSi QDs on the miscut substrate demonstrate a rather strong peak persistent up to 300 K, which is attributed to the well confinement of excitons in the dense GeSi QDs due to the absence of the wetting layer on the miscut substrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/2/1.4866356.html;jsessionid=69hjgsftdn6bd.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/2/10.1063/1.4866356&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dramatically enhanced self-assembly of GeSi quantum dots with superior photoluminescence induced by the substrate misorientation
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/2/10.1063/1.4866356
10.1063/1.4866356
SEARCH_EXPAND_ITEM