Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/3/10.1063/1.4867223
1.
1. V. Fr. Heusler, Z. Angew. Chem. 17(9), 260264 (1904).
http://dx.doi.org/10.1002/ange.19040170903
2.
2. G. Arrivaut, “Contribution a l'etude des alliages de manganese,” Thesis no.18, Bordeaux (1907); Bordeaux Mem. Soc. Sci. Phys. Nat. (Ser. 6) 4, 67160 (1908).
3.
3. E. Adams, W. M. Hubbard, and A. M. Syeles, J. Appl. Phys. 23(11), 1207 (1952).
http://dx.doi.org/10.1063/1.1702032
4.
4. B. T. M. Willis and H. P. Rooksby, Proc. Phys. Soc. B 67, 290 (1954).
http://dx.doi.org/10.1088/0370-1301/67/4/302
5.
5. S. A. Shchukarev, M. P. Morozova, and T. A. Stolyarova, Zh. Obshch. Khim. (Russian Journal of General Chemistry) 31(6), 17731777 (1961). http://www.maik.rssi.ru/cgi-perl/journal.pl?lang=rus&name=genchem
6.
6. K. Adachi, J. Phys. Soc. Jpn. 16(11), 2187 (1961).
http://dx.doi.org/10.1143/JPSJ.16.2187
7.
7. A. F. Andresen, W. Hälg, P. Fischer, and E. Stoll, Acta Chem. Scand. 21, 15431554 (1967).
http://dx.doi.org/10.3891/acta.chem.scand.21-1543
8.
8. N. P. Grazhdankina and M. A. Novikov, Pis'ma v ZhETF (JETP Letters) 30(6), 333335 (1979). http://www.jetpletters.ac.ru/ps/437/article_6897.pdf
9.
9. H. Yoshida, T. Shima, T. Takahashi, H. Fujimori, S. Abe, T. Kaneko, T. Kanomata, and T. Suzuki, J. Alloys Compd. 317–318, 297301 (2001).
http://dx.doi.org/10.1016/S0925-8388(00)01352-9
10.
10. J. B. Yang et al., Appl. Phys. Lett. 79(12), 1846 (2001).
http://dx.doi.org/10.1063/1.1405434
11.
11. J. B. Yang et al., J. Phys.: Condens. Matter 14, 65096519 (2002).
http://dx.doi.org/10.1088/0953-8984/14/25/318
12.
12. J. B. Yang et al., J. Appl. Phys. 91(10), 78667868 (2002).
http://dx.doi.org/10.1063/1.1451306
13.
13. J. B. Yang et al., Appl. Phys. Lett. 99, 082505 (2011).
http://dx.doi.org/10.1063/1.3630001
14.
14. Y. Mitsui et al., J. Jpn. Inst. Metals 73(1), 4045 (2009).
http://dx.doi.org/10.2320/jinstmet.73.40
15.
15. K. Koyama, Y. Mitsui, and K. Watanabe, Sci. Technol. Adv. Mater. 9, 024204 (2008).
http://dx.doi.org/10.1088/1468-6996/9/2/024204
16.
16. K. Koyama et al., J. Alloys Compd. 509, L78L80 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.11.082
17.
17. D. T. Zhang et al., J. Magn. Magn. Mater. 324, 18871890 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.01.017
18.
18. D. D. Sheng et al., J. Magn. Magn. Mater. 115, 6676 (1992).
http://dx.doi.org/10.1016/0304-8853(92)90184-P
19.
19. H. Göbel, E. Wolfgang, and H. Harms, Phys. Stat. Sol. A 34, 553 (1976).
http://dx.doi.org/10.1002/pssa.2210340218
20.
20. K. Ahlborn, K. Bärner, and W. Schröter, Phys. Stat. Sol. A 30, 251 (1975).
http://dx.doi.org/10.1002/pssa.2210300126
21.
21. T. Chen, J. Appl. Phys. 45, 2358 (1974).
http://dx.doi.org/10.1063/1.1663594
22.
22. J. M. Noothoven van Goor and H. Zijlstra, J. Appl. Phys. 39, 5471 (1968).
http://dx.doi.org/10.1063/1.1655996
23.
23. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993);
http://dx.doi.org/10.1103/PhysRevB.47.558
23.G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
24.
24. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996);
http://dx.doi.org/10.1016/0927-0256(96)00008-0
24.G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
25.
25. D. D. Johnson, Phys. Rev. B 38(18), 12807 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.12807
26.
26. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992);
http://dx.doi.org/10.1103/PhysRevB.46.6671
26.J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 48, 4978 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4978.2
27.
27. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
28.
28. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
29.
29. V. I. Anisimov and A. I. Lichtenstein, “LDA+U method: Screened coulomb interaction in the mean-field approximation,” Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation, edited by V. I. Anisimov (Gordon and Breach Science Publishers, 2000), Chap. 2.
30.
30. B. W. Roberts, Phys. Rev. 104, 607 (1956).
http://dx.doi.org/10.1103/PhysRev.104.607
31.
31. R. R. Heikes, Phys. Rev. 99, 446 (1955).
http://dx.doi.org/10.1103/PhysRev.99.446
32.
32. W. E. Stutius, T. Chen, and T. R. Sandin, AIP Conf. Proc. 18, 1222 (1974).
http://dx.doi.org/10.1063/1.2947245
33.
33. M.-F. Li et al., Jpn. J. Appl. Phys. 46(6A), 34553462 (2007).
http://dx.doi.org/10.1143/JJAP.46.3455
34.
34. R. Coehoornf and R. A. de Groot, J. Phys. F: Met. Phys. 15, 21352144 (1985).
http://dx.doi.org/10.1088/0305-4608/15/10/009
35.
35. P. Ravindran et al., Phys. Rev. B 59(24), 15680 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.15680
36.
36. S. Cao et al., J. Appl. Phys. 109, 07A740 (2011).
http://dx.doi.org/10.1063/1.3564966
37.
37. P. Kharel et al., J. Appl. Phys. 107, 09E303 (2010).
http://dx.doi.org/10.1063/1.3360204
38.
38. P. Kharel et al., J. Appl. Phys. 111, 07E326 (2012).
http://dx.doi.org/10.1063/1.3675615
39.
39. P. Kharel et al., J. Phys. D: Appl. Phys. 46, 095003 (2013).
http://dx.doi.org/10.1088/0022-3727/46/9/095003
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/3/10.1063/1.4867223
Loading
/content/aip/journal/aplmater/2/3/10.1063/1.4867223
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/3/10.1063/1.4867223
2014-03-04
2016-12-03

Abstract

Low-temperature MnBi (hexagonal NiAs phase) exhibits anomalies in the lattice constants () and bulk elastic modulus (B) below 100 K, spin reorientation and magnetic susceptibility maximum near 90 K, and, importantly for high-temperature magnetic applications, an increasing coercivity (unique to MnBi) above 180  K. We calculate the total energy and magneto-anisotropy energy (MAE) versus () using DFT+U methods. We reproduce and explain all the above anomalies. We predict that coercivity and MAE increase due to increasing , suggesting means to improve MnBi permanent magnets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/3/1.4867223.html;jsessionid=oUmqLzgU95lk4LVz2GzxWO6_.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/3/10.1063/1.4867223&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/3/10.1063/1.4867223&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/3/10.1063/1.4867223'
Top,Right1,Right2,Right3,