Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/3/10.1063/1.4868177
1.
1. J. L. Vivero-Escoto, Y.-D. Chiang, K. C.-W. Wu, and Y. Yamauchi, Sci. Technol. Adv. Mater. 13, 013003 (2012).
http://dx.doi.org/10.1088/1468-6996/13/1/013003
2.
2. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, Bull. Chem. Soc. Jpn. 85, 1 (2012).
http://dx.doi.org/10.1246/bcsj.20110162
3.
3. H. Balcar and J. Cejka, Coord. Chem. Rev. 257, 3107 (2013).
http://dx.doi.org/10.1016/j.ccr.2013.07.026
4.
4. W. Chaikittisilp, K. Ariga, and Y. Yamauchi, J. Mater. Chem. A 1, 14 (2013).
http://dx.doi.org/10.1039/c2ta00278g
5.
5. D. Gu and F. Schueth, Chem. Soc. Rev. 43, 313 (2014).
http://dx.doi.org/10.1039/c3cs60155b
6.
6. F. de Juan and E. Ruiz-Hitzky, Adv. Mater. 12, 430 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200003)12:6<430::AID-ADMA430>3.0.CO;2-3
7.
7. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwoediauer, Adv. Mater. 26, 149 (2014).
http://dx.doi.org/10.1002/adma.201303349
8.
8. S. Stewart, M. A. Ivy, and E. V. Anslyn, Chem. Soc. Rev. 43, 70 (2014).
http://dx.doi.org/10.1039/c3cs60183h
9.
9. P. A. Gale, N. Busschaert, C. J. E. Haynes, L. E. Karagiannidis, and I. L. Kirby, Chem. Soc. Rev. 43, 205 (2014).
http://dx.doi.org/10.1039/c3cs60316d
10.
10. K. Ariga, M. V. Lee, T. Mori, X.-Y. Yu, and J. P. Hill, Adv. Colloid Interface Sci. 154, 20 (2010).
http://dx.doi.org/10.1016/j.cis.2010.01.005
11.
11. K. Ariga, M. Li, G. J. Richards, and J. P. Hill, J. Nanosci. Nanotechnol. 11, 1 (2011).
http://dx.doi.org/10.1166/jnn.2011.3839
12.
12. K. Ariga, S. Ishihara, H. Abe, M. Li, and J. P. Hill, J. Mater. Chem. 22, 2369 (2012).
http://dx.doi.org/10.1039/c1jm14101e
13.
13. K. Ariga, Q. Ji, M. J. McShane, Y. M. Lvov, A. Vinu, and J. P. Hill, Chem. Mater. 24, 728 (2012).
http://dx.doi.org/10.1021/cm202281m
14.
14. M. Ramanathan, L. K. Shrestha, T. Mori, Q. Ji, J. P. Hill, and K. Ariga, Phys. Chem. Chem. Phys. 15, 10580 (2013).
http://dx.doi.org/10.1039/c3cp50620g
15.
15. K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, and J. P. Hill, Chem. Soc. Rev. 42, 6322 (2013).
http://dx.doi.org/10.1039/c2cs35475f
16.
16. K. Ariga, T. Mori, and J. P. Hill, Langmuir 29, 8459 (2013).
http://dx.doi.org/10.1021/la4006423
17.
17. L. K. Shrestha, Q. Ji, T. Mori, K. Miyazawa, Y. Yamauchi, J. P. Hill, and K. Ariga, Chem. Asian J. 8, 1662 (2013).
http://dx.doi.org/10.1002/asia.201300247
18.
18. M. Ramanathan, K. Hong, Q. Ji, Y. Yonamine, J. P. Hill, and K. Ariga, J. Nanosci. Nanotechnol. 14, 390 (2014).
http://dx.doi.org/10.1166/jnn.2014.8766
19.
19. S. Ishihara, J. Labuta, W. Van Rossom, D. Ishikawa, K. Minami, J. P. Hill, and K. Ariga, “Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes,” Phys. Chem. Chem. Phys. (in press).
http://dx.doi.org/10.1039/c3cp55431g
20.
20.This terminology was first proposed by Dr. Masakazu Aono at 1st International Symposium on Nanoarchitectonics Using Suprainteractions (NASI-1) at Tsukuba in 2000.
21.
21. D. H. McCullough and S. L. Regen, Chem. Commun. 24, 2787 (2004).
http://dx.doi.org/10.1039/b410027c
22.
22. S. Acharya, J. P. Hill, and K. Ariga, Adv. Mater. 21, 2959 (2009).
http://dx.doi.org/10.1002/adma.200802648
23.
23. T. Mori, K. Sakakibara, H. Endo, M. Akada, K. Okamoto, A. Shundo, M. V. Lee, Q. Ji, T. Fujisawa, K. Oka, M. Matsumoto, H. Sakai, M. Abe, J. P. Hill, and K. Ariga, Langmuir 29, 7239 (2013).
http://dx.doi.org/10.1021/la304293z
24.
24. K. Ariga, Y. Yamauchi, T. Mori, and J. P. Hill, Adv. Mater. 25, 6477 (2013).
http://dx.doi.org/10.1002/adma.201302283
25.
25. K. Ariga, J. P. Hill, and Q. Ji, Phys. Chem. Chem. Phys. 9, 2319 (2007).
http://dx.doi.org/10.1039/b700410a
26.
26. K. Ariga, Y. M. Lvov, K. Kawakami, Q. Ji, and J. P. Hill, Adv. Drug Delivery Rev. 63, 762 (2011).
http://dx.doi.org/10.1016/j.addr.2011.03.016
27.
27. K. Ariga, Q. Ji, J. P. Hill, Y. Bando, and M. Aono, NPG Asia Mater. 4, e17 (2012).
http://dx.doi.org/10.1038/am.2012.30
28.
28. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu, and J. P. Hill, Chem. Lett. 43, 36 (2014).
http://dx.doi.org/10.1246/cl.130987
29.
29. M. Dierendonck, S. De Koker, R. De Rycke, and B. G. De Geest, Soft Matter 10, 804 (2014)
http://dx.doi.org/10.1039/c3sm52202d
30.
30. E. Z. Lee, S. U. Lee, N.-S. Heo, G. D. Stucky, Y.-S. Jun, and W. H. Hong, Chem. Commun. 48, 3942 (2012).
http://dx.doi.org/10.1039/c2cc17909a
31.
31. M. S. Moorthy, H.-J. Cho, E.-J. Yu, Y.-S. Jung, and C.-S. Ha, Chem. Commun. 49, 8758 (2013).
http://dx.doi.org/10.1039/c3cc42513d
32.
32. W. Zhu, W. Li, H. Yang, Y. Jiang, C. Wang, Y. Chen, and G. Li, Chem. Eur. J. 19, 11603 (2013).
http://dx.doi.org/10.1002/chem.201300789
33.
33. D. Li, J. Liu, R. T. K. Kwok, Z. Liang, B. Z. Tang, and J. Yu, Chem. Commun. 48, 7167 (2012).
http://dx.doi.org/10.1039/c2cc31890c
34.
34. M. Waki, N. Mizoshita, Y. Maegawa, T. Hasegawa, T. Tani, T. Shimada, and S. Inagaki, Chem. Eur. J. 18, 1992 (2012).
http://dx.doi.org/10.1002/chem.201102492
35.
35. C.-Y. Sun, X.-L. Wang, C. Qin, J.-L. Jin, Z.-M. Su, P. Huang, and K.-Z. Shao, Chem. Eur. J. 19, 3639 (2013).
http://dx.doi.org/10.1002/chem.201203080
36.
36. L. Feng, H. Li, Y. Qu, and C. , Chem. Commun. 48, 4633 (2012).
http://dx.doi.org/10.1039/c2cc16115j
37.
37. M. Yin, Z. Li, Z. Liu, X. Yang, and J. Ren, ACS Appl. Mater. Interfaces 4, 431 (2012).
http://dx.doi.org/10.1021/am201516q
38.
38. M. Oroval, E. Climent, C. Coll, R. Eritja, A. Aviñó, M. D. Marcos, F. Sancenón, R. Martínez-Máñez, and P. Amorós, Chem. Commun. 49, 5480 (2013).
http://dx.doi.org/10.1039/c3cc42157k
39.
39. Y. Zhang, Q. Yuan, T. Chen, X. Zhang, Y. Chen, and W. Tan, Anal. Chem. 84, 1956 (2012).
http://dx.doi.org/10.1021/ac202993p
40.
40. D. Tang, B. Liu, R. Niessner, P. Li, and D. Knopp, Anal. Chem. 85, 10589 (2013).
http://dx.doi.org/10.1021/ac402713a
41.
41. C. Panda, B. B. Dhar, B. Malvi, Y. Bhattacharjeez, and S. S. Gupta, Chem. Commun. 49, 2216 (2013).
http://dx.doi.org/10.1039/c3cc38932d
42.
42. E. Climent, D. Grcninger, M. Hecht, M. Astrid Walter, R. Martínez-Máñez, M. G. Weller, F. Sancenón, P. Amorós, and K. Rurack, Chem. Eur. J. 19, 4117 (2013).
http://dx.doi.org/10.1002/chem.201300031
43.
43. R. Veneziano, G. Derrien, S. Tan, A. Brisson, J.-M. Devoisselle, J. Chopineau, and C. Charnay, Small 8, 3674 (2012).
http://dx.doi.org/10.1002/smll.201200758
44.
44. V. Gusak, L.-P. Heiniger, M. Graetzel, C. Langhammer, and B. Kasemo, Nano Lett. 12, 2397 (2012).
http://dx.doi.org/10.1021/nl3003842
45.
45. H.-Y. Lian, Y. H. Liang, Y. Yamauchi, and K. C.-W. Wu, J. Phys. Chem. C 115, 6581 (2011).
http://dx.doi.org/10.1021/jp110852p
46.
46. J. Karger and R. Valiullin, Chem. Soc. Rev. 42, 4172 (2013).
http://dx.doi.org/10.1039/c3cs35326e
47.
47. Y. Mirsky, A. Nahor, E. Edrei, N. Massad-Ivanir, L. M. Bonanno, E. Segal, and A. Sa'ar, Appl. Phys. Lett. 103, 033702 (2013)
http://dx.doi.org/10.1063/1.4813740
48.
48. C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, ACS Nano 6, 10546 (2012).
http://dx.doi.org/10.1021/nn304131d
49.
49. G. Macias, L. P. Hernández-Eguía, J. Ferré-Borrull, J. Pallares, and L. F. Marsal, ACS Appl. Mater. Interfaces 5, 8093 (2013).
http://dx.doi.org/10.1021/am4020814
50.
50. W. Guo, X. Duan, Y. Shen, K. Qi, C. Wei, and W. Zheng, Phys. Chem. Chem. Phys. 15, 11221 (2013).
http://dx.doi.org/10.1039/c3cp51663f
51.
51. J. Rao, A. Yu, C. Shao, and X. Zhou, ACS Appl. Mater. Interfaces 4, 5346 (2012).
http://dx.doi.org/10.1021/am3012966
52.
52. H. Liu, X. Du, X. Xing, G. Wang, and S. Z. Qiao, Chem. Commun. 48, 865 (2012).
http://dx.doi.org/10.1039/c1cc16341h
53.
53. C. Li, H. Wang, and Y. Yamauchi, Chem. Eur. J. 19, 2242 (2013).
http://dx.doi.org/10.1002/chem.201203378
54.
54. Y. Du, S. Guo, H. Qin, S. Dong, and E. Wang, Chem. Commun. 48, 799 (2012).
http://dx.doi.org/10.1039/c1cc15303j
55.
55. T. Mori and Y. Okahara, Trends Glycosci. Glycotechnol. 17, 71 (2005).
http://dx.doi.org/10.4052/tigg.17.71
56.
56. E. Casero, L. Vazquez, A. Maria Parra-Alfambra, and E. Lorenzo, Analyst 135, 1878 (2010).
http://dx.doi.org/10.1039/c0an00120a
57.
57. R. E. Speight and M. A. Cooper, J. Mol. Recognit. 25, 451 (2012).
http://dx.doi.org/10.1002/jmr.2209
58.
58. K. Ariga, A. Vinu, Q. Ji, O. Ohmori, J. P. Hill, S. Acharya, J. Koike, and S. Shiratori, Angew. Chem., Int. Ed. 47, 7254 (2008).
http://dx.doi.org/10.1002/anie.200802820
59.
59. Q. Ji, S. B. Yoon, J. P. Hill, A. Vinu, J.-S. Yu, and K. Ariga, J. Am. Chem. Soc. 131, 4220 (2009).
http://dx.doi.org/10.1021/ja9010354
60.
60. N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, and Y. Yamauchi, Chem. Commun. 49, 2521 (2013).
http://dx.doi.org/10.1039/c3cc38955c
61.
61. M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, and Y. Yamauchi, J. Am. Chem. Soc. 134, 2864 (2012).
http://dx.doi.org/10.1021/ja208940u
62.
62. M. Hu, N. L. Torad, and Y. Yamauchi, Eur. J. Inorg. Chem. 2012, 4795 (2012).
http://dx.doi.org/10.1002/ejic.201200654
63.
63. N. L. Torad, M. Hu, M. Imura, M. Naito, and Y. Yamauchi, J. Mater. Chem. 22, 18261 (2012).
http://dx.doi.org/10.1039/c2jm32805d
64.
64. N. L. Torad, H.-Y. Lian, K. C.-W. Wu, M. B. Zakaria, N. Suzuki, S. Ishihara, Q. Ji, M. Matsuura, K. Maekawa, K. Ariga, T. Kimurae, and Y. Yamauchi, J. Mater. Chem. 22, 20008 (2012).
http://dx.doi.org/10.1039/c2jm33510g
65.
65. M. Hu, N. L. K. Torad, Y.-D. Chiang, K. C.-W. Wu, and Y. Yamauchi, CrystEngComm 14, 3387 (2012).
http://dx.doi.org/10.1039/c2ce25040c
66.
66. G. Fu, W. Liu, S. Feng, and X. Yue, Chem. Commun. 48, 11567 (2012).
http://dx.doi.org/10.1039/c2cc36456e
67.
67. L. Jia, G. P. Mane, C. Anand, D. S. Dhawale, Q. Ji, K. Ariga, and A. Vinu, Chem. Commun. 48, 9029 (2012).
http://dx.doi.org/10.1039/c2cc33651k
68.
68. G. P. Mane, S. N. Talapaneni, C. Anand, S. Varghese, H. Iwai, Q. Ji, K. Ariga, T. Mori, and A. Vinu, Adv. Funct. Mater. 22, 3596 (2012).
http://dx.doi.org/10.1002/adfm.201200207
69.
69. Y. Kosaki, H. Izawa, S. Ishihara, K. Kawakami, M. Sumita, Y. Tateyama, Q. Ji, V. Krishnan, S. Hishita, Y. Yamauchi, J. P. Hill, A. Vinu, S. Shiratori, and K. Ariga, ACS Appl. Mater. Interfaces 5, 2930 (2013).
http://dx.doi.org/10.1021/am400940q
70.
70. A. Walcarius and L. Mercier, J. Mater. Chem. 20, 4478 (2010).
http://dx.doi.org/10.1039/b924316j
71.
71. Y. Su, H. M. Brown, G. Li, X. Zhou, J. E. Amonette, J. L. Fulton, D. M. Camaioni, and Z. C. Zhang, Appl. Catal., A 391, 436 (2011).
http://dx.doi.org/10.1016/j.apcata.2010.09.021
72.
72. Y.-Y. Lee and K. C.-W. Wu, Phys. Chem. Chem. Phys. 14, 13914 (2012).
http://dx.doi.org/10.1039/c2cp42751f
73.
73. W.-H. Peng, Y.-Y. Lee, C. Wu, and K. C.-W. Wu, J. Mater. Chem. 22, 23181 (2012).
http://dx.doi.org/10.1039/c2jm35391a
74.
74. F.-K. Shieh, C.-T. Hsiao, H.-M. Kao, Y.-C. Sue, K.-W. Lin, C.-C. Wu, X.-H. Chen, L. Wan, M.-H. Hsu, J. R. Hwu, C.-K. Tsung, and K. C.-W. Wu, RSC Adv. 3, 25686 (2013).
http://dx.doi.org/10.1039/c3ra45016c
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/3/10.1063/1.4868177
Loading
/content/aip/journal/aplmater/2/3/10.1063/1.4868177
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/3/10.1063/1.4868177
2014-03-14
2016-12-10

Abstract

In this short review, we have selected three main subjects: (i) mesoporous materials, (ii) sensing applications, and (iii) the concept of nanoarchitectonics, as examples of recent hot topics in nanomaterials research. Mesoporous materials satisfy the conditions necessary not only for a wide range of applications but also for ease of production, by a variety of simple processes, which yield bulk quantities of materials without loss of their well-defined nanometric structural features. Sensing applications are of general importance because many events arise from interaction with external stimuli. In addition to these important features, nanoarchitectonics is a concept aimed at production of novel functionality of whole units according to concerted interactions within nanostructures. For the combined subject of mesoporous sensor nanoarchitectonics, we present recent examples of research in the corresponding fields categorized according to mechanism of detection including optical, electrical, and piezoelectric sensing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/3/1.4868177.html;jsessionid=VFldouwczPFOyi9UvOtEkeUc.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/3/10.1063/1.4868177&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/3/10.1063/1.4868177&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/3/10.1063/1.4868177'
Top,Right1,Right2,Right3,