Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. L. Vivero-Escoto, Y.-D. Chiang, K. C.-W. Wu, and Y. Yamauchi, Sci. Technol. Adv. Mater. 13, 013003 (2012).
2. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, Bull. Chem. Soc. Jpn. 85, 1 (2012).
3. H. Balcar and J. Cejka, Coord. Chem. Rev. 257, 3107 (2013).
4. W. Chaikittisilp, K. Ariga, and Y. Yamauchi, J. Mater. Chem. A 1, 14 (2013).
5. D. Gu and F. Schueth, Chem. Soc. Rev. 43, 313 (2014).
6. F. de Juan and E. Ruiz-Hitzky, Adv. Mater. 12, 430 (2000).<430::AID-ADMA430>3.0.CO;2-3
7. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwoediauer, Adv. Mater. 26, 149 (2014).
8. S. Stewart, M. A. Ivy, and E. V. Anslyn, Chem. Soc. Rev. 43, 70 (2014).
9. P. A. Gale, N. Busschaert, C. J. E. Haynes, L. E. Karagiannidis, and I. L. Kirby, Chem. Soc. Rev. 43, 205 (2014).
10. K. Ariga, M. V. Lee, T. Mori, X.-Y. Yu, and J. P. Hill, Adv. Colloid Interface Sci. 154, 20 (2010).
11. K. Ariga, M. Li, G. J. Richards, and J. P. Hill, J. Nanosci. Nanotechnol. 11, 1 (2011).
12. K. Ariga, S. Ishihara, H. Abe, M. Li, and J. P. Hill, J. Mater. Chem. 22, 2369 (2012).
13. K. Ariga, Q. Ji, M. J. McShane, Y. M. Lvov, A. Vinu, and J. P. Hill, Chem. Mater. 24, 728 (2012).
14. M. Ramanathan, L. K. Shrestha, T. Mori, Q. Ji, J. P. Hill, and K. Ariga, Phys. Chem. Chem. Phys. 15, 10580 (2013).
15. K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, and J. P. Hill, Chem. Soc. Rev. 42, 6322 (2013).
16. K. Ariga, T. Mori, and J. P. Hill, Langmuir 29, 8459 (2013).
17. L. K. Shrestha, Q. Ji, T. Mori, K. Miyazawa, Y. Yamauchi, J. P. Hill, and K. Ariga, Chem. Asian J. 8, 1662 (2013).
18. M. Ramanathan, K. Hong, Q. Ji, Y. Yonamine, J. P. Hill, and K. Ariga, J. Nanosci. Nanotechnol. 14, 390 (2014).
19. S. Ishihara, J. Labuta, W. Van Rossom, D. Ishikawa, K. Minami, J. P. Hill, and K. Ariga, “Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes,” Phys. Chem. Chem. Phys. (in press).
20.This terminology was first proposed by Dr. Masakazu Aono at 1st International Symposium on Nanoarchitectonics Using Suprainteractions (NASI-1) at Tsukuba in 2000.
21. D. H. McCullough and S. L. Regen, Chem. Commun. 24, 2787 (2004).
22. S. Acharya, J. P. Hill, and K. Ariga, Adv. Mater. 21, 2959 (2009).
23. T. Mori, K. Sakakibara, H. Endo, M. Akada, K. Okamoto, A. Shundo, M. V. Lee, Q. Ji, T. Fujisawa, K. Oka, M. Matsumoto, H. Sakai, M. Abe, J. P. Hill, and K. Ariga, Langmuir 29, 7239 (2013).
24. K. Ariga, Y. Yamauchi, T. Mori, and J. P. Hill, Adv. Mater. 25, 6477 (2013).
25. K. Ariga, J. P. Hill, and Q. Ji, Phys. Chem. Chem. Phys. 9, 2319 (2007).
26. K. Ariga, Y. M. Lvov, K. Kawakami, Q. Ji, and J. P. Hill, Adv. Drug Delivery Rev. 63, 762 (2011).
27. K. Ariga, Q. Ji, J. P. Hill, Y. Bando, and M. Aono, NPG Asia Mater. 4, e17 (2012).
28. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu, and J. P. Hill, Chem. Lett. 43, 36 (2014).
29. M. Dierendonck, S. De Koker, R. De Rycke, and B. G. De Geest, Soft Matter 10, 804 (2014)
30. E. Z. Lee, S. U. Lee, N.-S. Heo, G. D. Stucky, Y.-S. Jun, and W. H. Hong, Chem. Commun. 48, 3942 (2012).
31. M. S. Moorthy, H.-J. Cho, E.-J. Yu, Y.-S. Jung, and C.-S. Ha, Chem. Commun. 49, 8758 (2013).
32. W. Zhu, W. Li, H. Yang, Y. Jiang, C. Wang, Y. Chen, and G. Li, Chem. Eur. J. 19, 11603 (2013).
33. D. Li, J. Liu, R. T. K. Kwok, Z. Liang, B. Z. Tang, and J. Yu, Chem. Commun. 48, 7167 (2012).
34. M. Waki, N. Mizoshita, Y. Maegawa, T. Hasegawa, T. Tani, T. Shimada, and S. Inagaki, Chem. Eur. J. 18, 1992 (2012).
35. C.-Y. Sun, X.-L. Wang, C. Qin, J.-L. Jin, Z.-M. Su, P. Huang, and K.-Z. Shao, Chem. Eur. J. 19, 3639 (2013).
36. L. Feng, H. Li, Y. Qu, and C. , Chem. Commun. 48, 4633 (2012).
37. M. Yin, Z. Li, Z. Liu, X. Yang, and J. Ren, ACS Appl. Mater. Interfaces 4, 431 (2012).
38. M. Oroval, E. Climent, C. Coll, R. Eritja, A. Aviñó, M. D. Marcos, F. Sancenón, R. Martínez-Máñez, and P. Amorós, Chem. Commun. 49, 5480 (2013).
39. Y. Zhang, Q. Yuan, T. Chen, X. Zhang, Y. Chen, and W. Tan, Anal. Chem. 84, 1956 (2012).
40. D. Tang, B. Liu, R. Niessner, P. Li, and D. Knopp, Anal. Chem. 85, 10589 (2013).
41. C. Panda, B. B. Dhar, B. Malvi, Y. Bhattacharjeez, and S. S. Gupta, Chem. Commun. 49, 2216 (2013).
42. E. Climent, D. Grcninger, M. Hecht, M. Astrid Walter, R. Martínez-Máñez, M. G. Weller, F. Sancenón, P. Amorós, and K. Rurack, Chem. Eur. J. 19, 4117 (2013).
43. R. Veneziano, G. Derrien, S. Tan, A. Brisson, J.-M. Devoisselle, J. Chopineau, and C. Charnay, Small 8, 3674 (2012).
44. V. Gusak, L.-P. Heiniger, M. Graetzel, C. Langhammer, and B. Kasemo, Nano Lett. 12, 2397 (2012).
45. H.-Y. Lian, Y. H. Liang, Y. Yamauchi, and K. C.-W. Wu, J. Phys. Chem. C 115, 6581 (2011).
46. J. Karger and R. Valiullin, Chem. Soc. Rev. 42, 4172 (2013).
47. Y. Mirsky, A. Nahor, E. Edrei, N. Massad-Ivanir, L. M. Bonanno, E. Segal, and A. Sa'ar, Appl. Phys. Lett. 103, 033702 (2013)
48. C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, ACS Nano 6, 10546 (2012).
49. G. Macias, L. P. Hernández-Eguía, J. Ferré-Borrull, J. Pallares, and L. F. Marsal, ACS Appl. Mater. Interfaces 5, 8093 (2013).
50. W. Guo, X. Duan, Y. Shen, K. Qi, C. Wei, and W. Zheng, Phys. Chem. Chem. Phys. 15, 11221 (2013).
51. J. Rao, A. Yu, C. Shao, and X. Zhou, ACS Appl. Mater. Interfaces 4, 5346 (2012).
52. H. Liu, X. Du, X. Xing, G. Wang, and S. Z. Qiao, Chem. Commun. 48, 865 (2012).
53. C. Li, H. Wang, and Y. Yamauchi, Chem. Eur. J. 19, 2242 (2013).
54. Y. Du, S. Guo, H. Qin, S. Dong, and E. Wang, Chem. Commun. 48, 799 (2012).
55. T. Mori and Y. Okahara, Trends Glycosci. Glycotechnol. 17, 71 (2005).
56. E. Casero, L. Vazquez, A. Maria Parra-Alfambra, and E. Lorenzo, Analyst 135, 1878 (2010).
57. R. E. Speight and M. A. Cooper, J. Mol. Recognit. 25, 451 (2012).
58. K. Ariga, A. Vinu, Q. Ji, O. Ohmori, J. P. Hill, S. Acharya, J. Koike, and S. Shiratori, Angew. Chem., Int. Ed. 47, 7254 (2008).
59. Q. Ji, S. B. Yoon, J. P. Hill, A. Vinu, J.-S. Yu, and K. Ariga, J. Am. Chem. Soc. 131, 4220 (2009).
60. N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, and Y. Yamauchi, Chem. Commun. 49, 2521 (2013).
61. M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, and Y. Yamauchi, J. Am. Chem. Soc. 134, 2864 (2012).
62. M. Hu, N. L. Torad, and Y. Yamauchi, Eur. J. Inorg. Chem. 2012, 4795 (2012).
63. N. L. Torad, M. Hu, M. Imura, M. Naito, and Y. Yamauchi, J. Mater. Chem. 22, 18261 (2012).
64. N. L. Torad, H.-Y. Lian, K. C.-W. Wu, M. B. Zakaria, N. Suzuki, S. Ishihara, Q. Ji, M. Matsuura, K. Maekawa, K. Ariga, T. Kimurae, and Y. Yamauchi, J. Mater. Chem. 22, 20008 (2012).
65. M. Hu, N. L. K. Torad, Y.-D. Chiang, K. C.-W. Wu, and Y. Yamauchi, CrystEngComm 14, 3387 (2012).
66. G. Fu, W. Liu, S. Feng, and X. Yue, Chem. Commun. 48, 11567 (2012).
67. L. Jia, G. P. Mane, C. Anand, D. S. Dhawale, Q. Ji, K. Ariga, and A. Vinu, Chem. Commun. 48, 9029 (2012).
68. G. P. Mane, S. N. Talapaneni, C. Anand, S. Varghese, H. Iwai, Q. Ji, K. Ariga, T. Mori, and A. Vinu, Adv. Funct. Mater. 22, 3596 (2012).
69. Y. Kosaki, H. Izawa, S. Ishihara, K. Kawakami, M. Sumita, Y. Tateyama, Q. Ji, V. Krishnan, S. Hishita, Y. Yamauchi, J. P. Hill, A. Vinu, S. Shiratori, and K. Ariga, ACS Appl. Mater. Interfaces 5, 2930 (2013).
70. A. Walcarius and L. Mercier, J. Mater. Chem. 20, 4478 (2010).
71. Y. Su, H. M. Brown, G. Li, X. Zhou, J. E. Amonette, J. L. Fulton, D. M. Camaioni, and Z. C. Zhang, Appl. Catal., A 391, 436 (2011).
72. Y.-Y. Lee and K. C.-W. Wu, Phys. Chem. Chem. Phys. 14, 13914 (2012).
73. W.-H. Peng, Y.-Y. Lee, C. Wu, and K. C.-W. Wu, J. Mater. Chem. 22, 23181 (2012).
74. F.-K. Shieh, C.-T. Hsiao, H.-M. Kao, Y.-C. Sue, K.-W. Lin, C.-C. Wu, X.-H. Chen, L. Wan, M.-H. Hsu, J. R. Hwu, C.-K. Tsung, and K. C.-W. Wu, RSC Adv. 3, 25686 (2013).

Data & Media loading...


Article metrics loading...



In this short review, we have selected three main subjects: (i) mesoporous materials, (ii) sensing applications, and (iii) the concept of nanoarchitectonics, as examples of recent hot topics in nanomaterials research. Mesoporous materials satisfy the conditions necessary not only for a wide range of applications but also for ease of production, by a variety of simple processes, which yield bulk quantities of materials without loss of their well-defined nanometric structural features. Sensing applications are of general importance because many events arise from interaction with external stimuli. In addition to these important features, nanoarchitectonics is a concept aimed at production of novel functionality of whole units according to concerted interactions within nanostructures. For the combined subject of mesoporous sensor nanoarchitectonics, we present recent examples of research in the corresponding fields categorized according to mechanism of detection including optical, electrical, and piezoelectric sensing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd