Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/3/10.1063/1.4868519
1.
1. I. Kamiya, D. E. Aspnes, L. T. Florez, and J. P. Harbison, Phys. Rev. B 46, 15894 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.15894
2.
2. J. R. Power, P. Weightman, S. Bose, A. I. Shkrebtii, and R. Del Sole, Phys. Rev. Lett. 80, 3133 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3133
3.
3. W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, Phys. Rev. B 66, 085334 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.085334
4.
4. V. L. Berkovits, A. O. Gusev, V. M. Lantratov, T. V. L’vova, A. B. Pushnyi, V. P. Ulin, and D. Paget, Phys. Rev. B 54, R8369 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R8369
5.
5. L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, Phys. Rev. B 75, 235315 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235315
6.
6. J. P. Silveira and F. Briones, J. Cryst. Growth 201–202, 113 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01301-3
7.
7. K. Hingerl, R. E. Balderas-Navarro, W. Hilber, A. Bonanni, and D. Stifter, Phys. Rev. B 62, 13048 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13048
8.
8. R. E. Balderas-Navarro, K. Hingerl, A. Bonanni, H. Sitter, and D. Stifter, Appl. Phys. Lett. 78, 3615 (2001).
http://dx.doi.org/10.1063/1.1378050
9.
9. D. E. Aspnes and A. A. Studna, Phys. Rev. Lett. 54, 1956 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1956
10.
10. A. Ohtake, Surf. Sci. Rep. 63, 295 (2008) and references therein.
http://dx.doi.org/10.1016/j.surfrep.2008.03.001
11.
11. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, J. Vac. Sci. Technol. A 6, 1327 (1988).
http://dx.doi.org/10.1116/1.575694
12.
12. W. Richter and J. T. Zettler, Appl. Surf. Sci. 100–101, 465 (1996).
http://dx.doi.org/10.1016/0169-4332(96)00321-2
13.
13. I. Kamiya, D. E. Aspnes, H. Tanaka, L. T. Florez, E. Colas, J. P. Harbison, and R. Bhat, Appl. Surf. Sci. 60–61, 534 (1992).
http://dx.doi.org/10.1016/0169-4332(92)90472-A
14.
14. C. Kaspari, M. Pristovsek, and W. Richter, Phys. Stat. Sol. 242, 2561 (2005).
http://dx.doi.org/10.1002/pssb.200541143
15.
15. P. Harrison, T. Farrell, A. Maunder, C. I. Smith, and P. Weightman, Meas. Sci. Technol. 12, 2185 (2001).
http://dx.doi.org/10.1088/0957-0233/12/12/321
16.
16. J. H. Convery, C. I. Smith, B. Khara, N. S. Scrutton, P. Harrison, T. Farrell, D. S. Martin, and P. Weightman, Phys. Rev. E 86, 011903 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.011903
17.
17. C. G. Hu, L. D. Sun, J. M. Flores-Camacho, M. Hohage, C. Y. Liu, T. Hu, and P. Zeppenfeld, Rev. Sci. Instrum. 81, 043108 (2010).
http://dx.doi.org/10.1063/1.3379289
18.
18. O. Núñez-Olvera, R. E. Balderas-Navarro, J. Ortega-Gallegos, L. E. Guevara-Macías, A. Armenta-Franco, M. A. Lastras-Montaño, L. F. Lastras-Martínez, and A. Lastras-Martínez, Rev. Sci. Instrum. 83, 103109 (2012).
http://dx.doi.org/10.1063/1.4760252
19.
19. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press, Baltimore, MD, USA, 1996).
20.
20. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).
http://dx.doi.org/10.1021/ac60214a047
21.
21. L. F. Lastras-Martínez, M. Chavira-Rodríguez, R. E. Balderas-Navarro, J. M. Flores-Camacho, and A. Lastras-Martínez, Phys. Rev. B 70, 035306 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.035306
22.
22. A. Lastras-Martínez, R. E. Balderas-Navarro, L. F. Lastras-Martínez, and M. A. Vidal, Phys. Rev. B 59, 10234 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.10234
23.
23. U. Rossow, L. Mantese, and D. Aspnes, Appl. Surf. Sci. 123–124, 237 (1998).
http://dx.doi.org/10.1016/S0169-4332(97)00544-8
24.
24. L. I. Kamlet and F. L. Terry Jr., J. Electron. Mater. 26, 1409 (1997).
http://dx.doi.org/10.1007/s11664-997-0059-y
25.
25. O. Mandelung, M. Schultz, and H. Weiss, Elements and III-V Compounds, Landolt-Bornstein, New Series Vol III/17a (Springer-Verlag, Berlin, 1982).
26.
26.We should note that solely in terms of line shape spectrum S1(E) could be as well understood on the basis of the surface electro-optic effect. In terms of spectrum amplitude, nevertheless, this interpretation is not supported since the amplitude of the RD electro-optic component is two orders of magnitude lower than the amplitude of the experimental RD spectrum as shown in Ref. 30.
27.
27. D. E. Aspnes, Sol. Energy Mater. Sol. Cells 32, 413 (1994).
http://dx.doi.org/10.1016/0927-0248(94)90104-X
28.
28. L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, Phys. Rev. B 61, 12946 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.12946
29.
29. C. Deparis and J. Massies, J. Crys. Growth 108, 157 (1991).
http://dx.doi.org/10.1016/0022-0248(91)90364-B
30.
30. L. F. Lastras-Martínez, J. M. Flores-Camacho, A. Lastras-Martínez, R. E. Balderas-Navarro, and M. Cardona, Phys. Rev. Lett. 96, 047402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.047402
31.
31. R. Kudrawiec, A. Khachapuridze, G. Cywinski, T. Suski, and J. Misiewicz, Phys. Status Solidi A 206, 847 (2009).
http://dx.doi.org/10.1002/pssa.200881410
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/3/10.1063/1.4868519
Loading
/content/aip/journal/aplmater/2/3/10.1063/1.4868519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/3/10.1063/1.4868519
2014-03-14
2016-12-03

Abstract

We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/3/1.4868519.html;jsessionid=UNg5BqTk8uCfTF9y3za3ySxb.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/3/10.1063/1.4868519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/3/10.1063/1.4868519&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/3/10.1063/1.4868519'
Top,Right1,Right2,Right3,