Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Kamiya, D. E. Aspnes, L. T. Florez, and J. P. Harbison, Phys. Rev. B 46, 15894 (1992).
2. J. R. Power, P. Weightman, S. Bose, A. I. Shkrebtii, and R. Del Sole, Phys. Rev. Lett. 80, 3133 (1998).
3. W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, Phys. Rev. B 66, 085334 (2002).
4. V. L. Berkovits, A. O. Gusev, V. M. Lantratov, T. V. L’vova, A. B. Pushnyi, V. P. Ulin, and D. Paget, Phys. Rev. B 54, R8369 (1996).
5. L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, Phys. Rev. B 75, 235315 (2007).
6. J. P. Silveira and F. Briones, J. Cryst. Growth 201–202, 113 (1999).
7. K. Hingerl, R. E. Balderas-Navarro, W. Hilber, A. Bonanni, and D. Stifter, Phys. Rev. B 62, 13048 (2000).
8. R. E. Balderas-Navarro, K. Hingerl, A. Bonanni, H. Sitter, and D. Stifter, Appl. Phys. Lett. 78, 3615 (2001).
9. D. E. Aspnes and A. A. Studna, Phys. Rev. Lett. 54, 1956 (1985).
10. A. Ohtake, Surf. Sci. Rep. 63, 295 (2008) and references therein.
11. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, J. Vac. Sci. Technol. A 6, 1327 (1988).
12. W. Richter and J. T. Zettler, Appl. Surf. Sci. 100–101, 465 (1996).
13. I. Kamiya, D. E. Aspnes, H. Tanaka, L. T. Florez, E. Colas, J. P. Harbison, and R. Bhat, Appl. Surf. Sci. 60–61, 534 (1992).
14. C. Kaspari, M. Pristovsek, and W. Richter, Phys. Stat. Sol. 242, 2561 (2005).
15. P. Harrison, T. Farrell, A. Maunder, C. I. Smith, and P. Weightman, Meas. Sci. Technol. 12, 2185 (2001).
16. J. H. Convery, C. I. Smith, B. Khara, N. S. Scrutton, P. Harrison, T. Farrell, D. S. Martin, and P. Weightman, Phys. Rev. E 86, 011903 (2012).
17. C. G. Hu, L. D. Sun, J. M. Flores-Camacho, M. Hohage, C. Y. Liu, T. Hu, and P. Zeppenfeld, Rev. Sci. Instrum. 81, 043108 (2010).
18. O. Núñez-Olvera, R. E. Balderas-Navarro, J. Ortega-Gallegos, L. E. Guevara-Macías, A. Armenta-Franco, M. A. Lastras-Montaño, L. F. Lastras-Martínez, and A. Lastras-Martínez, Rev. Sci. Instrum. 83, 103109 (2012).
19. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press, Baltimore, MD, USA, 1996).
20. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).
21. L. F. Lastras-Martínez, M. Chavira-Rodríguez, R. E. Balderas-Navarro, J. M. Flores-Camacho, and A. Lastras-Martínez, Phys. Rev. B 70, 035306 (2004).
22. A. Lastras-Martínez, R. E. Balderas-Navarro, L. F. Lastras-Martínez, and M. A. Vidal, Phys. Rev. B 59, 10234 (1999).
23. U. Rossow, L. Mantese, and D. Aspnes, Appl. Surf. Sci. 123–124, 237 (1998).
24. L. I. Kamlet and F. L. Terry Jr., J. Electron. Mater. 26, 1409 (1997).
25. O. Mandelung, M. Schultz, and H. Weiss, Elements and III-V Compounds, Landolt-Bornstein, New Series Vol III/17a (Springer-Verlag, Berlin, 1982).
26.We should note that solely in terms of line shape spectrum S1(E) could be as well understood on the basis of the surface electro-optic effect. In terms of spectrum amplitude, nevertheless, this interpretation is not supported since the amplitude of the RD electro-optic component is two orders of magnitude lower than the amplitude of the experimental RD spectrum as shown in Ref. 30.
27. D. E. Aspnes, Sol. Energy Mater. Sol. Cells 32, 413 (1994).
28. L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, Phys. Rev. B 61, 12946 (2000).
29. C. Deparis and J. Massies, J. Crys. Growth 108, 157 (1991).
30. L. F. Lastras-Martínez, J. M. Flores-Camacho, A. Lastras-Martínez, R. E. Balderas-Navarro, and M. Cardona, Phys. Rev. Lett. 96, 047402 (2006).
31. R. Kudrawiec, A. Khachapuridze, G. Cywinski, T. Suski, and J. Misiewicz, Phys. Status Solidi A 206, 847 (2009).

Data & Media loading...


Article metrics loading...



We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd