Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Sullaphen, K. Bogle, X. Cheng, J. M. Gregg, and N. Valanoor, Appl. Phys. Lett. 100, 203115 (2012).
2. R. Powell and W. Spicer, Phys. Rev. B 2, 2182 (1970).
3. M. Fraune, U. Rudiger, G. Guntherodt, S. Cardoso, and P. Freitas, Appl. Phys. Lett. 77, 3815 (2000).
4. J. Wang, J. Cai, Y.-H. Lin, and C.-W. Nan, Appl. Phys. Lett. 87, 202501 (2005).
5. M.-S. Wu and C.-H. Yang, Appl. Phys. Lett. 91, 033109 (2007).
6. F. Lin, D. Nordlund, T.-C. Weng, D. Sokaras, K. M. Jones, R. B. Reed, D. T. Gillaspie, D. G. Weir, R. G. Moore, and A. C. Dillon, ACS Appl. Mater. Inter. 5, 3643 (2013).
7. M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, A. M. Teridi, T. S. Varley, K. U. Wijayantha, and C. A. Kirk, ACS Appl. Mater. Inter. 5, 5675 (2013).
8. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
9. M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, and C. B. Lee, Adv. Mater. 19, 3919 (2007).
10. Y.-H. You, B.-S. So, J.-H. Hwang, W. Cho, S. S. Lee, T.-M. Chung, C. G. Kim, and K.-S. An, Appl. Phys. Lett. 89, 222105 (2006).
11. J. Son and Y.-H. Shin, Appl. Phys. Lett. 92, 222106 (2008).
12. S. I. Kim, J. H. Lee, Y. W. Chang, S. S. Hwang, and K. H. Yoo, Appl. Phys. Lett. 93, 033503 (2008).
13. K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J. S. Kim, and B. H. Park, Nano Lett. 10, 1359 (2010).
14. J. Y. Son, Y.-H. Shin, H. Kim, and H. M. Jang, ACS Nano 4, 2655 (2010).
15. J. Y. Son, C. H. Kim, J. H. Cho, Y.-H. Shin, and H. M. Jang, ACS Nano 4, 3288 (2010).
16. C. Lee, B. Kang, A. Benayad, M. Lee, S.-E. Ahn, K. Kim, G. Stefanovich, Y. Park, and I. Yoo, Appl. Phys. Lett. 93, 042115 (2008).
17. D.-Y. Cho, S. J. Song, U. K. Kim, K. M. Kim, H.-K. Lee, and C. S. Hwang, J. Mater. Chem. C 1, 4334 (2013).
18. M. H. Lee, S. J. Song, K. M. Kim, G. H. Kim, J. Y. Seok, J. H. Yoon, and C. S. Hwang, Appl. Phys. Lett. 97, 062909 (2010).
19. K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).
20. H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inque, and H. Takagi, Appl. Phys. Lett. 93, 113504 (2008).
21. M. K. Yang, J.-W. Park, T. K. Ko, and J.-K. Lee, Appl. Phys. Lett. 95, 042105 (2009).
22. Y.-C. Chen, Y.-L. Chung, B.-T. Chen, W.-C. Chen, and J.-S. Chen, J. Phys. Chem. C 117, 5758 (2013).
23. I. Hwang, M.-J. Lee, G.-H. Buh, J. Bae, J. Choi, J.-S. Kim, S. Hong, Y. S. Kim, I.-S. Byun, and S.-W. Lee, Appl. Phys. Lett. 97, 052106 (2010).
24. K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Adv. Mater. 22, 411 (2010).
25. J. H. Yoon, J. H. Han, J. S. Jung, W. Jeon, G. H. Kim, S. J. Song, J. Y. Seok, K. J. Yoon, M. H. Lee, and C. S. Hwang, Adv. Mater. 25, 1987 (2013).
26. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
27. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).
28. R. Klie and N. Browning, Appl. Phys. Lett. 77, 3737 (2000).
29. K. A. Bogle, J. Cheung, Y.-L. Chen, S.-C. Liao, C.-H. Lai, Y.-H. Chu, J. M. Gregg, S. B. Ogale, and N. Valanoor, Adv. Funct. Mater. 22, 5224 (2012).
30. J. Cheung, M. B. Okatan, J. Sullaphen, X. Cheng, V. Nagarajan, Y.-L. Chen, and Y.-H. Chu, MRS. Commun. 3, 107 (2013).
31.See supplementary material at for NiO nanocrystals with various heights and the measured current at pristine/high resistance state are given in Fig. S2. [Supplementary Material]
32. L. F. Fu, S. J. Welz, N. D. Browning, M. Kurasawa, and P. C. McIntyre, Appl. Phys. Lett. 87, 262904 (2005).
33. C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zandbergen, B. Freitag, P. Tiemeijer, and F. Hofer, Ultramicroscopy 96, 469 (2003).
34. U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, and N. A. Spaldin, Phys. Rev. B 88, 054111 (2013).
35. X. Cheng, J. Sullaphen, and N. Valanoor, “Investigation of redox effects at a nanoscale oxide interface” (unpublished).
36. H. Y. Peng, Y. F. Li, W. N. Lin, Y. Z. Wang, X. Y. Gao, and T. Wu, Sci. Rep. 2, 442 (2012).
37. S. Lee, S. Chae, S. Chang, J. Lee, S. Seo, B. Kahng, and T. Noh, Appl. Phys. Lett. 93, 212105 (2008).
38. H. Kohlstedt, A. Petraru, K. Szot, A. Rudiger, P. Meuffels, H. Haselier, R. Waser, and V. Nagarajan, Appl. Phys. Lett. 92, 062907 (2008).
39. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nat. Mater. 5, 312 (2006).
40. J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
41. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Adv. Mater. 19, 2232 (2007).
42. A. Baikalov, Y. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Sun, Y. Xue, and C. Chu, Appl. Phys. Lett. 83, 957 (2003).
43. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).

Data & Media loading...


Article metrics loading...



Nickel oxide (NiO) nanocrystals epitaxially grown on (001) strontium titanate (SrTiO) single crystal substrates were characterized to investigate interface morphology and chemistry. Aberration corrected high angle annular dark field scanning transmission electron microscopy reveals the interface between the NiO nanocrystals and the underlying SrTiO substrate to be rough, irregular, and have a lower average atomic number than the substrate or the nanocrystal. Energy dispersive x-ray spectroscopy and electron energy loss spectroscopy confirm both chemical disorder and a shift of the energy of the Ti peaks. Analysis of the O edge profiles in conjunction with this shift, implies the presence of oxygen vacancies at the interface. This sheds light into the origin of the previously postulated minority carriers’ model to explain resistive switching in NiO [J. Sullaphen, K. Bogle, X. Cheng, J. M. Gregg, and N. Valanoor, Appl. Phys. Lett.100, 203115 (2012)].


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd