Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/3/10.1063/1.4869457
1.
1. J. Sullaphen, K. Bogle, X. Cheng, J. M. Gregg, and N. Valanoor, Appl. Phys. Lett. 100, 203115 (2012).
http://dx.doi.org/10.1063/1.4714888
2.
2. R. Powell and W. Spicer, Phys. Rev. B 2, 2182 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2182
3.
3. M. Fraune, U. Rudiger, G. Guntherodt, S. Cardoso, and P. Freitas, Appl. Phys. Lett. 77, 3815 (2000).
http://dx.doi.org/10.1063/1.1330752
4.
4. J. Wang, J. Cai, Y.-H. Lin, and C.-W. Nan, Appl. Phys. Lett. 87, 202501 (2005).
http://dx.doi.org/10.1063/1.2130532
5.
5. M.-S. Wu and C.-H. Yang, Appl. Phys. Lett. 91, 033109 (2007).
http://dx.doi.org/10.1063/1.2759270
6.
6. F. Lin, D. Nordlund, T.-C. Weng, D. Sokaras, K. M. Jones, R. B. Reed, D. T. Gillaspie, D. G. Weir, R. G. Moore, and A. C. Dillon, ACS Appl. Mater. Inter. 5, 3643 (2013).
http://dx.doi.org/10.1021/am400105y
7.
7. M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, A. M. Teridi, T. S. Varley, K. U. Wijayantha, and C. A. Kirk, ACS Appl. Mater. Inter. 5, 5675 (2013).
http://dx.doi.org/10.1021/am401025v
8.
8. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
9.
9. M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, and C. B. Lee, Adv. Mater. 19, 3919 (2007).
http://dx.doi.org/10.1002/adma.200700251
10.
10. Y.-H. You, B.-S. So, J.-H. Hwang, W. Cho, S. S. Lee, T.-M. Chung, C. G. Kim, and K.-S. An, Appl. Phys. Lett. 89, 222105 (2006).
http://dx.doi.org/10.1063/1.2392991
11.
11. J. Son and Y.-H. Shin, Appl. Phys. Lett. 92, 222106 (2008).
http://dx.doi.org/10.1063/1.2931087
12.
12. S. I. Kim, J. H. Lee, Y. W. Chang, S. S. Hwang, and K. H. Yoo, Appl. Phys. Lett. 93, 033503 (2008).
http://dx.doi.org/10.1063/1.2958234
13.
13. K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J. S. Kim, and B. H. Park, Nano Lett. 10, 1359 (2010).
http://dx.doi.org/10.1021/nl9042906
14.
14. J. Y. Son, Y.-H. Shin, H. Kim, and H. M. Jang, ACS Nano 4, 2655 (2010).
http://dx.doi.org/10.1021/nn100234x
15.
15. J. Y. Son, C. H. Kim, J. H. Cho, Y.-H. Shin, and H. M. Jang, ACS Nano 4, 3288 (2010).
http://dx.doi.org/10.1021/nn100323x
16.
16. C. Lee, B. Kang, A. Benayad, M. Lee, S.-E. Ahn, K. Kim, G. Stefanovich, Y. Park, and I. Yoo, Appl. Phys. Lett. 93, 042115 (2008).
http://dx.doi.org/10.1063/1.2967194
17.
17. D.-Y. Cho, S. J. Song, U. K. Kim, K. M. Kim, H.-K. Lee, and C. S. Hwang, J. Mater. Chem. C 1, 4334 (2013).
http://dx.doi.org/10.1039/c3tc30687a
18.
18. M. H. Lee, S. J. Song, K. M. Kim, G. H. Kim, J. Y. Seok, J. H. Yoon, and C. S. Hwang, Appl. Phys. Lett. 97, 062909 (2010).
http://dx.doi.org/10.1063/1.3479526
19.
19. K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).
http://dx.doi.org/10.1063/1.2749846
20.
20. H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inque, and H. Takagi, Appl. Phys. Lett. 93, 113504 (2008).
http://dx.doi.org/10.1063/1.2982426
21.
21. M. K. Yang, J.-W. Park, T. K. Ko, and J.-K. Lee, Appl. Phys. Lett. 95, 042105 (2009).
http://dx.doi.org/10.1063/1.3191674
22.
22. Y.-C. Chen, Y.-L. Chung, B.-T. Chen, W.-C. Chen, and J.-S. Chen, J. Phys. Chem. C 117, 5758 (2013).
http://dx.doi.org/10.1021/jp311951e
23.
23. I. Hwang, M.-J. Lee, G.-H. Buh, J. Bae, J. Choi, J.-S. Kim, S. Hong, Y. S. Kim, I.-S. Byun, and S.-W. Lee, Appl. Phys. Lett. 97, 052106 (2010).
http://dx.doi.org/10.1063/1.3477953
24.
24. K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Adv. Mater. 22, 411 (2010).
http://dx.doi.org/10.1002/adma.200901493
25.
25. J. H. Yoon, J. H. Han, J. S. Jung, W. Jeon, G. H. Kim, S. J. Song, J. Y. Seok, K. J. Yoon, M. H. Lee, and C. S. Hwang, Adv. Mater. 25, 1987 (2013).
http://dx.doi.org/10.1002/adma.201204572
26.
26. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
27.
27. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).
http://dx.doi.org/10.1038/nature02756
28.
28. R. Klie and N. Browning, Appl. Phys. Lett. 77, 3737 (2000).
http://dx.doi.org/10.1063/1.1330572
29.
29. K. A. Bogle, J. Cheung, Y.-L. Chen, S.-C. Liao, C.-H. Lai, Y.-H. Chu, J. M. Gregg, S. B. Ogale, and N. Valanoor, Adv. Funct. Mater. 22, 5224 (2012).
http://dx.doi.org/10.1002/adfm.201201066
30.
30. J. Cheung, M. B. Okatan, J. Sullaphen, X. Cheng, V. Nagarajan, Y.-L. Chen, and Y.-H. Chu, MRS. Commun. 3, 107 (2013).
http://dx.doi.org/10.1557/mrc.2013.16
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4869457 for NiO nanocrystals with various heights and the measured current at pristine/high resistance state are given in Fig. S2. [Supplementary Material]
32.
32. L. F. Fu, S. J. Welz, N. D. Browning, M. Kurasawa, and P. C. McIntyre, Appl. Phys. Lett. 87, 262904 (2005).
http://dx.doi.org/10.1063/1.2144279
33.
33. C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zandbergen, B. Freitag, P. Tiemeijer, and F. Hofer, Ultramicroscopy 96, 469 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00109-8
34.
34. U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, and N. A. Spaldin, Phys. Rev. B 88, 054111 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.054111
35.
35. X. Cheng, J. Sullaphen, and N. Valanoor, “Investigation of redox effects at a nanoscale oxide interface” (unpublished).
36.
36. H. Y. Peng, Y. F. Li, W. N. Lin, Y. Z. Wang, X. Y. Gao, and T. Wu, Sci. Rep. 2, 442 (2012).
http://dx.doi.org/10.1038/srep00442
37.
37. S. Lee, S. Chae, S. Chang, J. Lee, S. Seo, B. Kahng, and T. Noh, Appl. Phys. Lett. 93, 212105 (2008).
http://dx.doi.org/10.1063/1.3036532
38.
38. H. Kohlstedt, A. Petraru, K. Szot, A. Rudiger, P. Meuffels, H. Haselier, R. Waser, and V. Nagarajan, Appl. Phys. Lett. 92, 062907 (2008).
http://dx.doi.org/10.1063/1.2841917
39.
39. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nat. Mater. 5, 312 (2006).
http://dx.doi.org/10.1038/nmat1614
40.
40. J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
41.
41. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Adv. Mater. 19, 2232 (2007).
http://dx.doi.org/10.1002/adma.200602915
42.
42. A. Baikalov, Y. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Sun, Y. Xue, and C. Chu, Appl. Phys. Lett. 83, 957 (2003).
http://dx.doi.org/10.1063/1.1590741
43.
43. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).
http://dx.doi.org/10.1063/1.1812580
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/3/10.1063/1.4869457
Loading
/content/aip/journal/aplmater/2/3/10.1063/1.4869457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/3/10.1063/1.4869457
2014-03-27
2016-12-08

Abstract

Nickel oxide (NiO) nanocrystals epitaxially grown on (001) strontium titanate (SrTiO) single crystal substrates were characterized to investigate interface morphology and chemistry. Aberration corrected high angle annular dark field scanning transmission electron microscopy reveals the interface between the NiO nanocrystals and the underlying SrTiO substrate to be rough, irregular, and have a lower average atomic number than the substrate or the nanocrystal. Energy dispersive x-ray spectroscopy and electron energy loss spectroscopy confirm both chemical disorder and a shift of the energy of the Ti peaks. Analysis of the O edge profiles in conjunction with this shift, implies the presence of oxygen vacancies at the interface. This sheds light into the origin of the previously postulated minority carriers’ model to explain resistive switching in NiO [J. Sullaphen, K. Bogle, X. Cheng, J. M. Gregg, and N. Valanoor, Appl. Phys. Lett.100, 203115 (2012)].

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/3/1.4869457.html;jsessionid=cMfm6DLDLTfs0qgv8WpotqRe.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/3/10.1063/1.4869457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/3/10.1063/1.4869457&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/3/10.1063/1.4869457'
Top,Right1,Right2,Right3,