Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4870116
1.
1. S. Roundy and P. Wright, Smart Mater. Struct. 13(5), 1131 (2004).
http://dx.doi.org/10.1088/0964-1726/13/5/018
2.
2. P. Mitcheson, P. Miao, B. Stark, E. Yeatman, A. Holmes, and T. Green, Sens. Actuators 115, 523 (2004).
http://dx.doi.org/10.1016/j.sna.2004.04.026
3.
3. L. Wang and F. Yuan, Smart Mater. Struct. 17, 045009 (2008).
http://dx.doi.org/10.1088/0964-1726/17/4/045009
4.
4. A. Erturk, J. Hoffmann, and D. Inman, Appl. Phys. Lett. 94(25), 254102 (2009).
http://dx.doi.org/10.1063/1.3159815
5.
5. D. Clair, A. Bibo, V. Sennakesavababu, M. Daqaq, and G. Li, Appl. Phys. Lett. 96(14), 144103 (2010).
http://dx.doi.org/10.1063/1.3385780
6.
6. P. Glynne-Jones and N. M. White, Sens. Rev. 21, 91 (2001).
http://dx.doi.org/10.1108/02602280110388252
7.
7. H. A. Sodano, D. J. Inman, and G. Park, Shock Vib. Dig. 36, 197 (2004).
http://dx.doi.org/10.1177/0583102404043275
8.
8. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, Science 317, 83 (2007).
http://dx.doi.org/10.1126/science.1143254
9.
9. A. Karalis, J. D. Joannopoulos, and M. Soljačić, Ann. Phys. 323, 34 (2008).
http://dx.doi.org/10.1016/j.aop.2007.04.017
10.
10. A. Erturk and D. J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008).
http://dx.doi.org/10.1177/1045389X07085639
11.
11. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram. 8, 107 (2002).
http://dx.doi.org/10.1023/A:1020599728432
12.
12. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
13.
13. A. Bayrashev, W. P. Robbins, and B. Ziaie, Sens. Actuators A 114, 244 (2004).
http://dx.doi.org/10.1016/j.sna.2004.01.007
14.
14. X. Dai, Y. Wen, P. Li, J. Yang, and G. Zhang, Sens. Actuators A 156, 350 (2009).
http://dx.doi.org/10.1016/j.sna.2009.10.002
15.
15. P. Li, Y. Wen, P. Liu, X. Li, and C. Jia, Sens. Actuators A 157, 100 (2010).
http://dx.doi.org/10.1016/j.sna.2009.11.007
16.
16. Y. Zhu and J. Zu, IEEE Transactions on Magnetics, 48(11), 33443347 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2199289
17.
17. R. C. Kambale, W. H. Yoon, D. S. Park, J. J. Choi, C. W. Ahn, J. W. Kim, B. D. Hahn, D. Y. Jeong, B. C. Lee, G. S. Chung, and J. Ryu, J. Appl. Phys. 113, 204108 (2013).
http://dx.doi.org/10.1063/1.4804959
18.
18. S. Dong, J. Zhai, J. F. Li, D. Viehland, and S. Priya, Appl. Phys. Lett. 93, 103511 (2008).
http://dx.doi.org/10.1063/1.2982099
19.
19. P. Li, Y. Wen, J. Chaobo, and L. Xinshen, IEEE Trans. Ind. Electron. 58, 2944 (2011).
http://dx.doi.org/10.1109/TIE.2010.2076308
20.
20. D. Patil, J. H. Kim, Y. S. Chai, J. H. Nam, J. H. Cho, B. I. Kim, and K. H. Kim, Appl. Phys. Express. 4, 073001 (2011).
http://dx.doi.org/10.1143/APEX.4.073001
21.
21. Y. Zhou, S. C. Yang, D. J. Apo, D. Maurya, and S. Priya, Appl. Phys. Lett. 101, 232905 (2012).
http://dx.doi.org/10.1063/1.4769365
22.
22. R. C. Kambale, J.-E. Kang, W.-H. Yoon, D.-S. Park, J.-J. Choi, C.-W. Ahn, J.-W. Kim, B.-D. Hahn, D.-Y. Jeong, Y.-D. Kim, S. Dong, and J. Ryu, “Magneto-Mechano-Electric (MME) Energy Harvesting Properties of Piezoelectric Macro-fiber Composite/Ni Magnetoelectric Generator,” Energy Harvest System (published online).
http://dx.doi.org/10.1515/ehs-2013-0026
23.
23. Y. Zhou, D. J. Apo, and S. Priya, Appl. Phys. Lett. 103, 192909 (2013).
http://dx.doi.org/10.1063/1.4829151
24.
24. S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, Appl. Phys. Lett. 96, 192502 (2010).
http://dx.doi.org/10.1063/1.3428774
25.
25. S. Yang, C. Park, K. H. Cho, and S. Priya, J. Appl. Phys. 108, 093706 (2010).
http://dx.doi.org/10.1063/1.3493154
26.
26. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knochel, E. Quandt, and D. Meyners, Nature Mater. 11, 523 (2012).
http://dx.doi.org/10.1038/nmat3306
27.
27. D. R. Patil, Y. Chai, R. C. Kambale, B.-G. Jeon, K. Yoo, J. Ryu, W.-H. Yoon, D.-S. Park, D.-Y. Jeong, S.-G. Lee et al., Appl. Phys. Lett. 102, 062909 (2013).
http://dx.doi.org/10.1063/1.4792590
28.
28. D. R. Patil, R. C. Kambale, Y. Chai, J. Ryu, W.-H. Yoon, D.-Y. Jeong, D.-S. Park, J. J. Choi, C. W. Ahn, B. D. Hahn, S. Zhang, K. H. Kim, and J. Ryu, Appl. Phys. Lett. 103, 052907 (2013).
http://dx.doi.org/10.1063/1.4817383
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4870116 for voltage output of the Ni/[011]-d32 SFC MME energy harvester at various acceleration and AC magnetic fields. [Supplementary Material]
30.
30. D. Zhu, in Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration, Sustainable Energy Harvesting Technologies – Past, Present and Future, edited by Dr. Yen Kheng Tan (InTech, 2011).
http://dx.doi.org/10.5772/25731
31.
31. G. Liu, P. Ci, and S. Dong, Appl. Phys. Lett. 104, 032908 (2014).
http://dx.doi.org/10.1063/1.4862876
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4870116
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4870116
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4870116
2014-04-02
2016-12-07

Abstract

We report the physical behavior of self-biased multi-functional magneto-mechano-electric (MME) laminates simultaneously excited by magnetic and/or mechanical vibrations. The MME laminates composed of Ni and single crystal fiber composite exhibited strong ME coupling under = 0 Oe at both low frequency and at resonance frequency. Depending on the magnetic field direction with respect to the crystal orientation, the energy harvester showed strong in-plane anisotropy in the output voltage and was found to generate open circuit output voltage of 20 V and power density of 59.78 mW/Oe2 g2 cm3 under weak magnetic field of 1 Oe and mechanical vibration of 30 mg, at frequency of 21 Hz across 1 MΩ resistance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4870116.html;jsessionid=x9kFdTL4P7jSO3Htsx3IOx5B.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4870116&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4870116&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4870116'
Top,Right1,Right2,Right3,