Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Roundy and P. Wright, Smart Mater. Struct. 13(5), 1131 (2004).
2. P. Mitcheson, P. Miao, B. Stark, E. Yeatman, A. Holmes, and T. Green, Sens. Actuators 115, 523 (2004).
3. L. Wang and F. Yuan, Smart Mater. Struct. 17, 045009 (2008).
4. A. Erturk, J. Hoffmann, and D. Inman, Appl. Phys. Lett. 94(25), 254102 (2009).
5. D. Clair, A. Bibo, V. Sennakesavababu, M. Daqaq, and G. Li, Appl. Phys. Lett. 96(14), 144103 (2010).
6. P. Glynne-Jones and N. M. White, Sens. Rev. 21, 91 (2001).
7. H. A. Sodano, D. J. Inman, and G. Park, Shock Vib. Dig. 36, 197 (2004).
8. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, Science 317, 83 (2007).
9. A. Karalis, J. D. Joannopoulos, and M. Soljačić, Ann. Phys. 323, 34 (2008).
10. A. Erturk and D. J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008).
11. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram. 8, 107 (2002).
12. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
13. A. Bayrashev, W. P. Robbins, and B. Ziaie, Sens. Actuators A 114, 244 (2004).
14. X. Dai, Y. Wen, P. Li, J. Yang, and G. Zhang, Sens. Actuators A 156, 350 (2009).
15. P. Li, Y. Wen, P. Liu, X. Li, and C. Jia, Sens. Actuators A 157, 100 (2010).
16. Y. Zhu and J. Zu, IEEE Transactions on Magnetics, 48(11), 33443347 (2012).
17. R. C. Kambale, W. H. Yoon, D. S. Park, J. J. Choi, C. W. Ahn, J. W. Kim, B. D. Hahn, D. Y. Jeong, B. C. Lee, G. S. Chung, and J. Ryu, J. Appl. Phys. 113, 204108 (2013).
18. S. Dong, J. Zhai, J. F. Li, D. Viehland, and S. Priya, Appl. Phys. Lett. 93, 103511 (2008).
19. P. Li, Y. Wen, J. Chaobo, and L. Xinshen, IEEE Trans. Ind. Electron. 58, 2944 (2011).
20. D. Patil, J. H. Kim, Y. S. Chai, J. H. Nam, J. H. Cho, B. I. Kim, and K. H. Kim, Appl. Phys. Express. 4, 073001 (2011).
21. Y. Zhou, S. C. Yang, D. J. Apo, D. Maurya, and S. Priya, Appl. Phys. Lett. 101, 232905 (2012).
22. R. C. Kambale, J.-E. Kang, W.-H. Yoon, D.-S. Park, J.-J. Choi, C.-W. Ahn, J.-W. Kim, B.-D. Hahn, D.-Y. Jeong, Y.-D. Kim, S. Dong, and J. Ryu, “Magneto-Mechano-Electric (MME) Energy Harvesting Properties of Piezoelectric Macro-fiber Composite/Ni Magnetoelectric Generator,” Energy Harvest System (published online).
23. Y. Zhou, D. J. Apo, and S. Priya, Appl. Phys. Lett. 103, 192909 (2013).
24. S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, Appl. Phys. Lett. 96, 192502 (2010).
25. S. Yang, C. Park, K. H. Cho, and S. Priya, J. Appl. Phys. 108, 093706 (2010).
26. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knochel, E. Quandt, and D. Meyners, Nature Mater. 11, 523 (2012).
27. D. R. Patil, Y. Chai, R. C. Kambale, B.-G. Jeon, K. Yoo, J. Ryu, W.-H. Yoon, D.-S. Park, D.-Y. Jeong, S.-G. Lee et al., Appl. Phys. Lett. 102, 062909 (2013).
28. D. R. Patil, R. C. Kambale, Y. Chai, J. Ryu, W.-H. Yoon, D.-Y. Jeong, D.-S. Park, J. J. Choi, C. W. Ahn, B. D. Hahn, S. Zhang, K. H. Kim, and J. Ryu, Appl. Phys. Lett. 103, 052907 (2013).
29.See supplementary material at for voltage output of the Ni/[011]-d32 SFC MME energy harvester at various acceleration and AC magnetic fields. [Supplementary Material]
30. D. Zhu, in Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration, Sustainable Energy Harvesting Technologies – Past, Present and Future, edited by Dr. Yen Kheng Tan (InTech, 2011).
31. G. Liu, P. Ci, and S. Dong, Appl. Phys. Lett. 104, 032908 (2014).

Data & Media loading...


Article metrics loading...



We report the physical behavior of self-biased multi-functional magneto-mechano-electric (MME) laminates simultaneously excited by magnetic and/or mechanical vibrations. The MME laminates composed of Ni and single crystal fiber composite exhibited strong ME coupling under = 0 Oe at both low frequency and at resonance frequency. Depending on the magnetic field direction with respect to the crystal orientation, the energy harvester showed strong in-plane anisotropy in the output voltage and was found to generate open circuit output voltage of 20 V and power density of 59.78 mW/Oe2 g2 cm3 under weak magnetic field of 1 Oe and mechanical vibration of 30 mg, at frequency of 21 Hz across 1 MΩ resistance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd