Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4870141
1.
1. M. Eschrig, Phys. Today 64(1), 43 (2011).
http://dx.doi.org/10.1063/1.3541944
2.
2. S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).
http://dx.doi.org/10.1063/1.120032
3.
3. L. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2058
4.
4. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Y. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.267001
5.
5. A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.180503
6.
6. I. C. Moraru, W. P. Pratt Jr., and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.037004
7.
7. G.-X. Miao, A. Ramos, and J. S. Moodera, Phys. Rev. Lett. 101, 137001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.137001
8.
8. G. Nowak, H. Zabel, K. Westerholt, I. Garifullin, M. Marcellini, A. Liebig, and B. Hjörvarsson, Phys. Rev. B 78, 134520 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134520
9.
9. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).
http://dx.doi.org/10.1063/1.3486687
10.
10. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin, J. Schumann, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 106, 067005 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.067005
11.
11. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin, J. Schumann, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. B 85, 024502 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024502
12.
12. P. V. Leksin, A. A. Kamashev, N. N. Garif'yanov, I. A. Garifullin, Y. V. Fominov, J. Schumann, C. Hess, V. Kataev, and B. Büchner, JETP Lett. 97, 478 (2013).
http://dx.doi.org/10.1134/S0021364013080109
13.
13. B. L. Rhodes, S. Legvold, and F. H. Spedding, Phys. Rev. 109, 1547 (1958).
http://dx.doi.org/10.1103/PhysRev.109.1547
14.
14. D. L. Strandburg, S. Legvold, and F. H. Spedding, Phys. Rev. 127, 2046 (1962).
http://dx.doi.org/10.1103/PhysRev.127.2046
15.
15. R. S. Safrata, T. R. Fisher, and E. G. Shelley, J. Appl. Phys. 37, 4869 (1966).
http://dx.doi.org/10.1063/1.1708153
16.
16. W. C. Koehler, J. W. Cable, M. K. Wilkinson, and E. O. Wollan, Phys. Rev. 151, 414 (1966).
http://dx.doi.org/10.1103/PhysRev.151.414
17.
17. W. C. Koehler, J. W. Cable, H. R. Child, M. K. Wilkinson, and E. O. Wollan, Phys. Rev. 158, 450 (1967).
http://dx.doi.org/10.1103/PhysRev.158.450
18.
18. J. D. S. Witt, T. P. A. Hase, R. Fan, T. R. Charlton, S. Langridge, and M. G. Blamire, J. Phys. Condens. Matter 23, 416006 (2011).
http://dx.doi.org/10.1088/0953-8984/23/41/416006
19.
19. J. Kwo, M. Hong, and S. Nakahara, Appl. Phys. Lett. 49, 319 (1986).
http://dx.doi.org/10.1063/1.97155
20.
20. J. D. S. Witt, J. W. A. Robinson, and M. G. Blamire, Phys. Rev. B 85, 184526 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184526
21.
21. J. Stöhr and H. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics (Springer-Verlag, Berlin, 2006).
22.
22. F. Chiodi, J. D. S. Witt, R. G. J. Smits, L. Qu, G. B. Halász, C.-T. Wu, O. T. Valls, K. Halterman, J. W. A. Robinson, and M. G. Blamire, Europhys. Lett. 101, 37002 (2013).
http://dx.doi.org/10.1209/0295-5075/101/37002
23.
23. G. Halász, J. Robinson, J. Annett, and M. Blamire, Phys. Rev. B 79, 224505 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224505
24.
24. J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science 329, 59 (2010).
http://dx.doi.org/10.1126/science.1189246
25.
25. I. Sosnin, H. Cho, V. T. Petrashov, and A. F. Volkov, Phys. Rev. Lett. 96, 157002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.157002
26.
26. I. T. M. Usman, K. A. Yates, J. D. Moore, K. Morrison, V. K. Pecharsky, K. A. Gschneidner, T. Verhagen, J. Aarts, V. I. Zverev, J. W. A. Robinson, J. D. S. Witt, M. G. Blamire, and L. F. Cohen, Phys. Rev. B 83, 144518 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144518
27.
27. M. Alidoust and J. Linder, Phys. Rev. B 82, 224504 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.224504
28.
28. G. B. Halász, M. G. Blamire, and J. W. A. Robinson, Phys. Rev. B 84, 024517 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024517
29.
29. L.-J. Jin, Y. Wang, L. Wen, G.-Q. Zha, and S.-P. Zhou, Phys. Lett. A 376, 2435 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.06.017
30.
30. C.-T. Wu, O. T. Valls, and K. Halterman, Phys. Rev. B 86, 184517 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.184517
31.
31. Y. Fominov and A. Golubov, JETP Lett. 91, 308 (2010)
http://dx.doi.org/10.1134/S002136401006010X
31.Y. Fominov and A. Golubov, [Pis'ma ZhETF 91, 329 (2010)].
32.
32. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin, Y. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.057005
33.
33. N. Banerjee, C. B. Smiet, R. G. J. Smits, A. Ozaeta, F. S. Bergeret, M. G. Blamire, and J. W. A. Robinson, Nat. Commun. 5, 3048 (2014).
http://dx.doi.org/10.1038/ncomms4048
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4870141
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4870141
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4870141
2014-04-02
2016-12-07

Abstract

We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial) and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature ( ) of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4870141.html;jsessionid=JR6TVkuEYMq0fNUSpL0Ckm8J.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4870141&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4870141&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4870141'
Top,Right1,Right2,Right3,