Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4870876
1.
1. S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films 476(1), 129 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.10.053
2.
2. S. Veprek and S. Reiprich, Thin Solid Films 268(1–2), 64 (1995).
http://dx.doi.org/10.1016/0040-6090(95)06695-0
3.
3. L. Hultman, J. Bareno, A. Flink, H. Söderberg, K. Larsson, V. Petrova, M. Oden, J. E. Greene, and I. Petrov, Phys. Rev. B 75, 155437 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155437
4.
4. A. Niederhofer, T. Bolom, P. Nesladek, K. Moto, C. Eggs, D. S. Patil, and S. Veprek, Surf. Coat. Technol. 146–147, 183 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01469-4
5.
5. R. F. Zhang, A. S. Argon, and S. Veprek, Phys. Rev. Lett. 102, 015503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.015503
6.
6. R. F. Zhang, A. S. Argon, and S. Veprek, Phys. Rev. B 79, 245426 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245426
7.
7. B. Alling, E. I. Isaev, A. Flink, L. Hultman, and I. A. Abrikosov, Phys. Rev. B 78, 132103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.132103
8.
8. T. Marten, E. I. Isaev, B. Alling, L. Hultman, and I. A. Abrikosov, Phys. Rev. B 81, 212102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.212102
9.
9. C. Iwamoto and S. Tanaka, J. Am. Ceram. Soc. 81(2), 363368 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02342.x
10.
10. T. Mae, M. Nose, M. Zhou, T. Nagae, and K. Shimamura, Surf. Coat. Technol. 142–144, 954 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01187-2
11.
11. S. H. Sheng, R. F. Zhang, and S. Veprek, Acta Mater. 59, 297 (2011).
http://dx.doi.org/10.1016/j.actamat.2010.09.033
12.
12. P. J. Martin, A. Bendavid, J. M. Cairney, and M. Hoffman, Surf. Coat. Technol. 200, 2228 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.06.012
13.
13. Y. Dong, W. Zhao, J. Yue, and G. Li, Appl. Phys. Lett. 89, 121916 (2006).
http://dx.doi.org/10.1063/1.2348092
14.
14. X. Hu, H. Zhang, J. Dai, G. Li, and M. Gu, J. Vac. Sci. Technol. A 23, 114 (2005).
http://dx.doi.org/10.1116/1.1821583
15.
15. H. Söderberg, A. Flink, J. Birch, P. O. Å. Persson, M. Beckers, L. Hultman, and M. Odén, J. Mater. Res. 22, 3255 (2007).
http://dx.doi.org/10.1557/JMR.2007.0412
16.
16. N. Ghafoor, F. Eriksson, P. O. Å. Persson, L. Hultman, and J. Birch, Thin Solid Films 516, 982 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.06.108
17.
17. D. Gall, I. Petrov, L. D. Madsen, J.-E. Sundgren, and J. E. Greene, J. Vac. Sci. Technol., A 16, 2411 (1998).
http://dx.doi.org/10.1116/1.581360
18.
18. H. Söderberg, J. M. Molina-Aldareguia, T. Larsson, L. Hultman, and M. Odén, Appl. Phys. Lett. 88, 191902 (2006).
http://dx.doi.org/10.1063/1.2202145
19.
19. A. Fallqvist, N. Ghafoor, H. Fager, L. Hultman, and P. O. A. Persson, J. Appl. Phys. 114, 224302 (2013).
http://dx.doi.org/10.1063/1.4838495
20.
20. P. Gianozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
21.
21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
22.
22. S. Baroni, S. de Gironcoli, A. D. Corso, and P. Gianozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
23.
23. T. Marten, B. Alling, E. I. Isaev, H. Lind, F. Tasnádi, L. Hultman, and I. Abrikosov, Phys. Rev. B 85, 104106 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.104106
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4870876 for details about the structural models, phonon calculations, and energy landscape. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4870876
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4870876
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4870876
2014-04-14
2016-12-05

Abstract

Isostructural stability of B1-NaCl type SiN on (001) and (111) oriented ZrN surfaces is studied theoretically and experimentally. The ZrN/SiN/ZrN superlattices with modulation wavelength of 3.76 nm (d∼0.4 nm) were grown by dc-magnetron sputtering on MgO(001) and MgO(111). The results indicate that 0.4 nm thin SiN layers utterly influence the preferred orientation of epitaxial growth: on MgO(001) cube-on-cube epitaxy of ZrN/SiN superlattices were realized whereas multilayers on MgO(111) surface exhibited an unexpected 002 texture with a complex fourfold 90°-rotated in-plane preferred orientation. Density functional theory calculations confirm stability of a (001) interface with respect to a (111) which explains the anomaly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4870876.html;jsessionid=ft7zEd2Co0CclDIyva0rLwqw.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4870876&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4870876&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4870876'
Top,Right1,Right2,Right3,