Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4871795
1.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131(17), 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
2.
2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
3.
3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338(6107), 643 (2012).
http://dx.doi.org/10.1126/science.1228604
4.
4.Research Cell Efficiency Records, National Center for Photovoltaics, see http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 10.02.2014.
5.
5. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, Nano Lett. 14(2), 1000 (2014).
http://dx.doi.org/10.1021/nl404454h
6.
6. V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, Nano Lett. 14(2), 888 (2014).
http://dx.doi.org/10.1021/nl404252e
7.
7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342(6156), 341 (2013).
http://dx.doi.org/10.1126/science.1243982
8.
8. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342(6156), 344 (2013).
http://dx.doi.org/10.1126/science.1243167
9.
9. B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, Adv. Mater. 26, 2041 (2014).
http://dx.doi.org/10.1002/adma.201304803
10.
10. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013);
http://dx.doi.org/10.1038/ncomms3761
10.G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mat. 24(1), 151 (2014);
http://dx.doi.org/10.1002/adfm.201302090
10.D. Liu and T. L. Kelly, Nat. Photon. 8(2), 133 (2014);
http://dx.doi.org/10.1038/nphoton.2013.342
10.O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photon. 8(2), 128 (2014).
http://dx.doi.org/10.1038/nphoton.2013.341
11.
11. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London) 501(7467), 395 (2013).
http://dx.doi.org/10.1038/nature12509
12.
12. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8(2), 1674 (2014).
http://dx.doi.org/10.1021/nn406020d
13.
13. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6(6), 1739 (2013).
http://dx.doi.org/10.1039/c3ee40810h
14.
14. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature (London) 499(7458), 316 (2013).
http://dx.doi.org/10.1038/nature12340
15.
15. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, Chem. Mater. 25(22), 4613 (2013).
http://dx.doi.org/10.1021/cm402919x
16.
16. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4(6), 897 (2013).
http://dx.doi.org/10.1021/jz400348q
17.
17. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134(42), 17396 (2012);
http://dx.doi.org/10.1021/ja307789s
17.J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 14, 724 (2014);
http://dx.doi.org/10.1021/nl403997a
17.K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, Energy Environ. Sci. 7(3), 1142 (2014).
http://dx.doi.org/10.1039/c3ee43707h
18.
18. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photon. 7(6), 486 (2013).
http://dx.doi.org/10.1038/nphoton.2013.80
19.
19. H. S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N. G. Park, and J. Bisquert, Nat. Commun. 4, 2242 (2013).
http://dx.doi.org/10.1038/ncomms3242
20.
20. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13(4), 1764 (2013).
http://dx.doi.org/10.1021/nl400349b
21.
21. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5(3), 429 (2014).
http://dx.doi.org/10.1021/jz402706q
22.
22. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, Nano Lett. 13(6), 2412 (2013);
http://dx.doi.org/10.1021/nl400286w
22.M. H. Kumar, N. Yantara, S. Dharani, M. Grätzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49(94), 11089 (2013);
http://dx.doi.org/10.1039/c3cc46534a
22.J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale 5(8), 3245 (2013).
http://dx.doi.org/10.1039/c3nr00218g
23.
23. W. A. Laban and L. Etgar, Energy Environ. Sci. 6(11), 3249 (2013).
http://dx.doi.org/10.1039/c3ee42282h
24.
24. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136(2), 622 (2014).
http://dx.doi.org/10.1021/ja411509g
25.
25. J. J. Choi, X. Yang, Z. M. Norman, S. J. L. Billinge, and J. S. Owen, Nano Lett. 14(1), 127 (2014).
http://dx.doi.org/10.1021/nl403514x
26.
26. D. Q. Bi, S. J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, RSC Adv. 3(41), 18762 (2013).
http://dx.doi.org/10.1039/c3ra43228a
27.
27. H. J. Snaith, J. Phys. Chem. Lett. 4(21), 3623 (2013).
http://dx.doi.org/10.1021/jz4020162
28.
28. N.-G. Park, J. Phys. Chem. Lett. 4(15), 2423 (2013).
http://dx.doi.org/10.1021/jz400892a
29.
29. H.-S. Kim, S. H. Im, and N.-G. Park, J. Phys. Chem. C 118, 5615 (2014).
http://dx.doi.org/10.1021/jp409025w
30.
30. J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2005).
31.
31. I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, and M. G. Kanatzidis, J. Am. Chem. Soc. 134(20), 8579 (2012).
http://dx.doi.org/10.1021/ja301539s
32.
32. D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304(5677), 1650 (2004);
http://dx.doi.org/10.1126/science.1098252
32.A. P. Mackenzie, S. R. Julian, A. J. Diver, G. J. McMullan, M. P. Ray, G. G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita, Phys. Rev. Lett. 76(20), 3786 (1996);
http://dx.doi.org/10.1103/PhysRevLett.76.3786
32.Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature (London) 380(6570), 141 (1996);
http://dx.doi.org/10.1038/380141a0
32.A. Bhatnagar, A. Roy Chaudhuri, Y. Heon Kim, D. Hesse, and M. Alexe, Nat. Commun. 4, 2835 (2013);
http://dx.doi.org/10.1038/ncomms3835
32.S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nano 5(2), 143 (2010).
http://dx.doi.org/10.1038/nnano.2009.451
33.
33. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52(15), 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
34.
34. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature (London) 485(7399), 486 (2012).
http://dx.doi.org/10.1038/nature11067
35.
35. T. Ishihara, J. Lumin. 60–61, 269 (1994).
http://dx.doi.org/10.1016/0022-2313(94)90145-7
36.
36. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Grätzel, and T. J. White, J. Mater. Chem. A 1(18), 5628 (2013).
http://dx.doi.org/10.1039/c3ta10518k
37.
37. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1(4), 042111 (2013).
http://dx.doi.org/10.1063/1.4824147
38.
38. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).
http://dx.doi.org/10.1039/C3EE43822H
39.
39. Y. Chang, C. Park, and K. Matsuishi, J. Korean Phys. Soc. 44(4), 889 (2004).
40.
40. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, J. Phys. Chem. C 117(27), 13902 (2013).
http://dx.doi.org/10.1021/jp4048659
41.
41. E. Riedel and H.-J. Meyer, Allgemeine und Anorganische Chemie, 11th ed. (De Gruyter, 2013), p.75.
42.
42. L. Lang, J.-H. Yang, H.-R. Liu, H. J. Xiang, and X. G. Gong, Phys. Lett. A 378(3), 290 (2014).
http://dx.doi.org/10.1016/j.physleta.2013.11.018
43.
43. D. B. Mitzi, K. Chondroudis, and C. R. Kagan, IBM J. Res. Dev. 45(1), 29 (2001).
http://dx.doi.org/10.1147/rd.451.0029
44.
44. F. Brivio, K. T. Butler, A. Walsh, and M. van Schilfgaarde, preprint arXiv:1401.6993v3 (2014).
45.
45. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4(17), 2999 (2013).
http://dx.doi.org/10.1021/jz401532q
46.
46. R. Lindblad, D. Bi, B.-W. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E. M. J. Johansson, and H. Rensmo, J. Phys. Chem. Lett. 5, 648 (2014).
http://dx.doi.org/10.1021/jz402749f
47.
47. L. Etgar, Materials 6(2), 445 (2013).
http://dx.doi.org/10.3390/ma6020445
48.
48. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen, and H. J. Snaith, Nano Lett. 13(7), 3124 (2013).
http://dx.doi.org/10.1021/nl401044q
49.
49. N. Kitazawa, Y. Watanabe, and Y. Nakamura, J. Mater. Sci. 37(17), 3585 (2002).
http://dx.doi.org/10.1023/A:1016584519829
50.
50. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells,” J. Phys. Chem. C (published online).
http://dx.doi.org/10.1021/jp411112k
51.
51. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
http://dx.doi.org/10.1002/adma.201305172
52.
52. G. Giorgi, J.-I. Fujisawa, H. Segawa, and K. Yamashita, J. Phys. Chem. Lett. 4(24), 4213 (2013).
http://dx.doi.org/10.1021/jz4023865
53.
53. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, Solid State Commun. 127(9), 619 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00566-0
54.
54. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).
http://dx.doi.org/10.1016/0921-4526(94)91130-4
55.
55. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, Nano Lett. 13(9), 4505 (2013).
http://dx.doi.org/10.1021/nl4024287
56.
56. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, preprint arXiv:1402.4980v2 (2014).
57.
57. Y. Yasuhiro, N. Toru, E. Masaru, W. Atsushi, and K. Yoshihiko, Appl. Phys. Exp. 7(3), 032302 (2014).
http://dx.doi.org/10.7567/APEX.7.032302
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4871795
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4871795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4871795
2014-04-23
2016-12-07

Abstract

The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4871795.html;jsessionid=IG4Wx0u1i4Cq4NPETh_f0QAC.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4871795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4871795&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4871795'
Top,Right1,Right2,Right3,