Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131(17), 6050 (2009).
2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338(6107), 643 (2012).
4.Research Cell Efficiency Records, National Center for Photovoltaics, see, 10.02.2014.
5. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, Nano Lett. 14(2), 1000 (2014).
6. V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, Nano Lett. 14(2), 888 (2014).
7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342(6156), 341 (2013).
8. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342(6156), 344 (2013).
9. B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, Adv. Mater. 26, 2041 (2014).
10. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013);
10.G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mat. 24(1), 151 (2014);
10.D. Liu and T. L. Kelly, Nat. Photon. 8(2), 133 (2014);
10.O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photon. 8(2), 128 (2014).
11. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London) 501(7467), 395 (2013).
12. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8(2), 1674 (2014).
13. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6(6), 1739 (2013).
14. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature (London) 499(7458), 316 (2013).
15. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, Chem. Mater. 25(22), 4613 (2013).
16. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4(6), 897 (2013).
17. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134(42), 17396 (2012);
17.J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 14, 724 (2014);
17.K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, Energy Environ. Sci. 7(3), 1142 (2014).
18. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photon. 7(6), 486 (2013).
19. H. S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N. G. Park, and J. Bisquert, Nat. Commun. 4, 2242 (2013).
20. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13(4), 1764 (2013).
21. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5(3), 429 (2014).
22. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, Nano Lett. 13(6), 2412 (2013);
22.M. H. Kumar, N. Yantara, S. Dharani, M. Grätzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49(94), 11089 (2013);
22.J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale 5(8), 3245 (2013).
23. W. A. Laban and L. Etgar, Energy Environ. Sci. 6(11), 3249 (2013).
24. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136(2), 622 (2014).
25. J. J. Choi, X. Yang, Z. M. Norman, S. J. L. Billinge, and J. S. Owen, Nano Lett. 14(1), 127 (2014).
26. D. Q. Bi, S. J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, RSC Adv. 3(41), 18762 (2013).
27. H. J. Snaith, J. Phys. Chem. Lett. 4(21), 3623 (2013).
28. N.-G. Park, J. Phys. Chem. Lett. 4(15), 2423 (2013).
29. H.-S. Kim, S. H. Im, and N.-G. Park, J. Phys. Chem. C 118, 5615 (2014).
30. J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2005).
31. I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, and M. G. Kanatzidis, J. Am. Chem. Soc. 134(20), 8579 (2012).
32. D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304(5677), 1650 (2004);
32.A. P. Mackenzie, S. R. Julian, A. J. Diver, G. J. McMullan, M. P. Ray, G. G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita, Phys. Rev. Lett. 76(20), 3786 (1996);
32.Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature (London) 380(6570), 141 (1996);
32.A. Bhatnagar, A. Roy Chaudhuri, Y. Heon Kim, D. Hesse, and M. Alexe, Nat. Commun. 4, 2835 (2013);
32.S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nano 5(2), 143 (2010).
33. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52(15), 9019 (2013).
34. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature (London) 485(7399), 486 (2012).
35. T. Ishihara, J. Lumin. 60–61, 269 (1994).
36. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Grätzel, and T. J. White, J. Mater. Chem. A 1(18), 5628 (2013).
37. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1(4), 042111 (2013).
38. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).
39. Y. Chang, C. Park, and K. Matsuishi, J. Korean Phys. Soc. 44(4), 889 (2004).
40. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, J. Phys. Chem. C 117(27), 13902 (2013).
41. E. Riedel and H.-J. Meyer, Allgemeine und Anorganische Chemie, 11th ed. (De Gruyter, 2013), p.75.
42. L. Lang, J.-H. Yang, H.-R. Liu, H. J. Xiang, and X. G. Gong, Phys. Lett. A 378(3), 290 (2014).
43. D. B. Mitzi, K. Chondroudis, and C. R. Kagan, IBM J. Res. Dev. 45(1), 29 (2001).
44. F. Brivio, K. T. Butler, A. Walsh, and M. van Schilfgaarde, preprint arXiv:1401.6993v3 (2014).
45. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4(17), 2999 (2013).
46. R. Lindblad, D. Bi, B.-W. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E. M. J. Johansson, and H. Rensmo, J. Phys. Chem. Lett. 5, 648 (2014).
47. L. Etgar, Materials 6(2), 445 (2013).
48. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen, and H. J. Snaith, Nano Lett. 13(7), 3124 (2013).
49. N. Kitazawa, Y. Watanabe, and Y. Nakamura, J. Mater. Sci. 37(17), 3585 (2002).
50. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells,” J. Phys. Chem. C (published online).
51. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
52. G. Giorgi, J.-I. Fujisawa, H. Segawa, and K. Yamashita, J. Phys. Chem. Lett. 4(24), 4213 (2013).
53. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, Solid State Commun. 127(9), 619 (2003).
54. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).
55. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, Nano Lett. 13(9), 4505 (2013).
56. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, preprint arXiv:1402.4980v2 (2014).
57. Y. Yasuhiro, N. Toru, E. Masaru, W. Atsushi, and K. Yoshihiko, Appl. Phys. Exp. 7(3), 032302 (2014).

Data & Media loading...


Article metrics loading...



The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd