Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Mori, in Handbook on the Physics and Chemistry of Rare Earths, edited by J. C. Bunzli, K. A. Gschneidner and V. K. Pecharsky (Elsevier, 2007), Vol. 38, Chap. 238, p. 105.
2. D. Gignoux and D. Schmitt, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier, 1997), Vol. 10, Chap. 2, p. 239.
3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410(6824), 63 (2001).
4. T. Mori and T. Tanaka, J. Phys. Soc. Jpn. 68, 2033 (1999).
5. T. Mori and A. Leithe-Jasper, Phys. Rev. B 66(21), 214419 (2002).
6. T. Mori and H. Mamiya, Phys. Rev. B 68(21), 214422 (2003).
7. T. Mori, R. Sahara, Y. Kawazoe, K. Yubuta, T. Shishido, and Y. Grin, J. Appl. Phys. 113(17), 17E156 (2013).
8. T. Mori and T. Nishimura, J. Solid State Chem. 179(9), 2908 (2006).
9. T. Mori, T. Nishimura, K. Yamaura, and E. Takayama-Muromachi, J. Appl. Phys. 101(9), 093714 (2007).
10. G. A. Slack, D. W. Oliver, and F. H. Horn, Phys. Rev. B 4(6), 1714 (1971).
11. D. G. Cahill, H. E. Fischer, S. K. Watson, R. O. Pohl, and G. A. Slack, Phys. Rev. B 40(5), 3254 (1989).
12. T. Mori, J. Martin, and G. Nolas, J. Appl. Phys. 102(7), 073510 (2007).
13. D. Emin, J. Solid State Chem. 177(4–5), 1619 (2004).
14. C. Wood and D. Emin, Phys. Rev. B 29(8), 4582 (1984).
15. T. L. Aselage, D. Emin, S. S. McCready, and R. V. Duncan, Phys. Rev. Lett. 81(11), 2316 (1998).
16. S. Maruyama, Y. Miyazaki, K. Hayashi, T. Kajitani, and T. Mori, Appl. Phys. Lett. 101(15), 152101 (2012).
17. A. Berrada, J.-P. Mercurio, J. Etourneau, and P. Hagenmuller, Mater. Res. Bull. 11(8), 947 (1976).
18. P. Rogl and H. Nowotny, Monatsh. Chem. 105(5), 1082 (1974).
19. T. Mori, S. Okada, and K. Kudou, J. Appl. Phys. 97(10), 10A910 (2005).
20. T. Mori, H. Borrmann, S. Okada, K. Kudou, A. Leithe-Jasper, U. Burkhardt, and Y. Grin, Phys. Rev. B 76(6), 064404 (2007).
21. P. Rogl, P. E. Potter, and H. R. Haines, J. Nucl. Mater. 160(2–3), 107 (1988).
22. H. Orsini-Rosenberg and W. Steurer, Philos. Mag. 91(19–21), 2567 (2010).
23. S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G. G. Lonzarich, L. Balicas, H. Lee, and Z. Fisk, Nat. Phys. 4(8), 603 (2008).
24. K. Yubuta, T. Mori, S. Okada, Y. Prots, H. Borrmann, Y. Grin, and T. Shishido, Philos. Mag. 93(9), 1054 (2013).
25. F. R. Wagner, A. I. Baranov, Y. Grin, and M. Kohout, Z. Anorg. Allg. Chem. 639(11), 2025 (2013).
26. Crystal Growth Technology, K. Byrappa, T. Ohachi, W. Michaeli et al. (William Andrew Inc., 2003), p. 561.
27. T. Mori, I. Kuzmych-Ianchuk, K. Yubuta, T. Shishido, S. Okada, K. Kudou, and Y. Grin, J. Appl. Phys. 111(7), 07E127 (2012).
28.See supplementary material at for details of sample preparation and characterization, instrumentation, sensitivity analysis, and thermal modeling. [Supplementary Material]
29. J. P. Feser and D. G. Cahill, Rev. Sci. Instrum. 83(10), 104901 (2012).
30. E. Deligoz, K. Colakoglu, H. Ozisik, and Y. O. Ciftci, Fizika 16(2), 138 (2010).
31. T. Mori, S. Okada, and K. Kudou, (unpublished), consistent in magnitude with the low temperature data of Ref. 20.
32. K. Yubuta, T. Mori, A. Leithe-Jasper, Y. Grin, S. Okada, and T. Shishido, Mat. Res. Bull. 44(8), 1743 (2009).
33. W. Kim and A. Majumdar, J. Appl. Phys. 99(8), 084306 (2006).
34. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, J. Appl. Phys. 105(5), 054303 (2009).
35. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96(4), 045901 (2006).
36. P. G. Klemens, G. K. White, and R. J. Tainsh, Philos. Mag. 7(80), 1323 (1962).
37. P. G. Klemens and R. K. Williams, Int. Metals Rev. 31(1), 197 (1986).
38. L. M. Holanda, L. Mendonça-Ferreira, R. A. Ribeiro, J. M. Osorio-Guillén, G. M. Dalpian, K. Kuga, S. Nakatsuji, Z. Fisk, R. R. Urbano, P. G. Pagliuso, and C. Rettori, J. Phys.: Condens. Matter 25, 216001 (2013).

Data & Media loading...


Article metrics loading...



Rare earth metal borides have attracted great interest due to their unusual properties, such as superconductivity and -electron magnetism. A recent discovery attributes the tunability of magnetism in rare earth aluminoborides to the effect of so-called “building defects.” In this paper, we report data for the effect of building defects on the thermal conductivities of -TmAlB single crystals. Building defects reduce the thermal conductivity of -TmAlB by ≈30%. At room temperature, the thermal conductivity of AlB is nearly a factor of 5 higher than that of -TmAlB. AlB single crystals are thermally anisotropic with the -axis thermal conductivity nearly twice the thermal conductivity of the plane. Temperature dependence of the thermal conductivity near and above room temperature reveals that both electrons and phonons contribute substantially to thermal transport in AlB with electrons being the dominant heat carriers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd