Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4871797
1.
1. T. Mori, in Handbook on the Physics and Chemistry of Rare Earths, edited by J. C. Bunzli, K. A. Gschneidner and V. K. Pecharsky (Elsevier, 2007), Vol. 38, Chap. 238, p. 105.
2.
2. D. Gignoux and D. Schmitt, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier, 1997), Vol. 10, Chap. 2, p. 239.
3.
3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410(6824), 63 (2001).
http://dx.doi.org/10.1038/35065039
4.
4. T. Mori and T. Tanaka, J. Phys. Soc. Jpn. 68, 2033 (1999).
http://dx.doi.org/10.1143/JPSJ.68.2033
5.
5. T. Mori and A. Leithe-Jasper, Phys. Rev. B 66(21), 214419 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214419
6.
6. T. Mori and H. Mamiya, Phys. Rev. B 68(21), 214422 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214422
7.
7. T. Mori, R. Sahara, Y. Kawazoe, K. Yubuta, T. Shishido, and Y. Grin, J. Appl. Phys. 113(17), 17E156 (2013).
http://dx.doi.org/10.1063/1.4800945
8.
8. T. Mori and T. Nishimura, J. Solid State Chem. 179(9), 2908 (2006).
http://dx.doi.org/10.1016/j.jssc.2006.03.030
9.
9. T. Mori, T. Nishimura, K. Yamaura, and E. Takayama-Muromachi, J. Appl. Phys. 101(9), 093714 (2007).
http://dx.doi.org/10.1063/1.2730571
10.
10. G. A. Slack, D. W. Oliver, and F. H. Horn, Phys. Rev. B 4(6), 1714 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.1714
11.
11. D. G. Cahill, H. E. Fischer, S. K. Watson, R. O. Pohl, and G. A. Slack, Phys. Rev. B 40(5), 3254 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3254
12.
12. T. Mori, J. Martin, and G. Nolas, J. Appl. Phys. 102(7), 073510 (2007).
http://dx.doi.org/10.1063/1.2785017
13.
13. D. Emin, J. Solid State Chem. 177(4–5), 1619 (2004).
http://dx.doi.org/10.1016/j.jssc.2003.12.017
14.
14. C. Wood and D. Emin, Phys. Rev. B 29(8), 4582 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.4582
15.
15. T. L. Aselage, D. Emin, S. S. McCready, and R. V. Duncan, Phys. Rev. Lett. 81(11), 2316 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2316
16.
16. S. Maruyama, Y. Miyazaki, K. Hayashi, T. Kajitani, and T. Mori, Appl. Phys. Lett. 101(15), 152101 (2012).
http://dx.doi.org/10.1063/1.4758297
17.
17. A. Berrada, J.-P. Mercurio, J. Etourneau, and P. Hagenmuller, Mater. Res. Bull. 11(8), 947 (1976).
http://dx.doi.org/10.1016/0025-5408(76)90168-9
18.
18. P. Rogl and H. Nowotny, Monatsh. Chem. 105(5), 1082 (1974).
http://dx.doi.org/10.1007/BF00910277
19.
19. T. Mori, S. Okada, and K. Kudou, J. Appl. Phys. 97(10), 10A910 (2005).
http://dx.doi.org/10.1063/1.1850365
20.
20. T. Mori, H. Borrmann, S. Okada, K. Kudou, A. Leithe-Jasper, U. Burkhardt, and Y. Grin, Phys. Rev. B 76(6), 064404 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064404
21.
21. P. Rogl, P. E. Potter, and H. R. Haines, J. Nucl. Mater. 160(2–3), 107 (1988).
http://dx.doi.org/10.1016/0022-3115(88)90036-0
22.
22. H. Orsini-Rosenberg and W. Steurer, Philos. Mag. 91(19–21), 2567 (2010).
http://dx.doi.org/10.1080/14786435.2010.513695
23.
23. S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G. G. Lonzarich, L. Balicas, H. Lee, and Z. Fisk, Nat. Phys. 4(8), 603 (2008).
http://dx.doi.org/10.1038/nphys1002
24.
24. K. Yubuta, T. Mori, S. Okada, Y. Prots, H. Borrmann, Y. Grin, and T. Shishido, Philos. Mag. 93(9), 1054 (2013).
http://dx.doi.org/10.1080/14786435.2012.741727
25.
25. F. R. Wagner, A. I. Baranov, Y. Grin, and M. Kohout, Z. Anorg. Allg. Chem. 639(11), 2025 (2013).
http://dx.doi.org/10.1002/zaac.201200523
26.
26. Crystal Growth Technology, K. Byrappa, T. Ohachi, W. Michaeli et al. (William Andrew Inc., 2003), p. 561.
27.
27. T. Mori, I. Kuzmych-Ianchuk, K. Yubuta, T. Shishido, S. Okada, K. Kudou, and Y. Grin, J. Appl. Phys. 111(7), 07E127 (2012).
http://dx.doi.org/10.1063/1.3674285
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4871797 for details of sample preparation and characterization, instrumentation, sensitivity analysis, and thermal modeling. [Supplementary Material]
29.
29. J. P. Feser and D. G. Cahill, Rev. Sci. Instrum. 83(10), 104901 (2012).
http://dx.doi.org/10.1063/1.4757863
30.
30. E. Deligoz, K. Colakoglu, H. Ozisik, and Y. O. Ciftci, Fizika 16(2), 138 (2010).
31.
31. T. Mori, S. Okada, and K. Kudou, (unpublished), consistent in magnitude with the low temperature data of Ref. 20.
32.
32. K. Yubuta, T. Mori, A. Leithe-Jasper, Y. Grin, S. Okada, and T. Shishido, Mat. Res. Bull. 44(8), 1743 (2009).
http://dx.doi.org/10.1016/j.materresbull.2009.03.013
33.
33. W. Kim and A. Majumdar, J. Appl. Phys. 99(8), 084306 (2006).
http://dx.doi.org/10.1063/1.2188251
34.
34. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, J. Appl. Phys. 105(5), 054303 (2009).
http://dx.doi.org/10.1063/1.3078808
35.
35. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96(4), 045901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.045901
36.
36. P. G. Klemens, G. K. White, and R. J. Tainsh, Philos. Mag. 7(80), 1323 (1962).
http://dx.doi.org/10.1080/14786436208213166
37.
37. P. G. Klemens and R. K. Williams, Int. Metals Rev. 31(1), 197 (1986).
http://dx.doi.org/10.1179/imtr.1986.31.1.197
38.
38. L. M. Holanda, L. Mendonça-Ferreira, R. A. Ribeiro, J. M. Osorio-Guillén, G. M. Dalpian, K. Kuga, S. Nakatsuji, Z. Fisk, R. R. Urbano, P. G. Pagliuso, and C. Rettori, J. Phys.: Condens. Matter 25, 216001 (2013).
http://dx.doi.org/10.1088/0953-8984/25/21/216001
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4871797
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4871797
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4871797
2014-04-29
2016-12-05

Abstract

Rare earth metal borides have attracted great interest due to their unusual properties, such as superconductivity and -electron magnetism. A recent discovery attributes the tunability of magnetism in rare earth aluminoborides to the effect of so-called “building defects.” In this paper, we report data for the effect of building defects on the thermal conductivities of -TmAlB single crystals. Building defects reduce the thermal conductivity of -TmAlB by ≈30%. At room temperature, the thermal conductivity of AlB is nearly a factor of 5 higher than that of -TmAlB. AlB single crystals are thermally anisotropic with the -axis thermal conductivity nearly twice the thermal conductivity of the plane. Temperature dependence of the thermal conductivity near and above room temperature reveals that both electrons and phonons contribute substantially to thermal transport in AlB with electrons being the dominant heat carriers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4871797.html;jsessionid=MKJJtCedHyLLP6L3ygsxUAqK.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4871797&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4871797&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4871797'
Top,Right1,Right2,Right3,