Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4871915
1.
1. V. N. Vasilets, A. V. Kuznetsov, and V. I. Sevastianov, J. Biomed. Mater. Res., Part A 69A, 428 (2004).
http://dx.doi.org/10.1002/jbm.a.30005
2.
2. S. Lerouge, A. C. Fozza, M. R. Wertheimer, R. Marchand, and L’H. Yahia, Plasmas Polym. 5, 31 (2000).
http://dx.doi.org/10.1023/A:1009504209276
3.
3. P. J. Key and R. C. Preston, J. Phys. E: Sci. Instrum. 13, 866 (1980).
http://dx.doi.org/10.1088/0022-3735/13/8/016
4.
4. J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, Rev. Sci. Instrum. 68, 1360 (1997).
http://dx.doi.org/10.1063/1.1147942
5.
5. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London) 441, 325 (2006).
http://dx.doi.org/10.1038/nature04760
6.
6. T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, Nat. Photonics 4, 767 (2010).
http://dx.doi.org/10.1038/nphoton.2010.220
7.
7. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004).
http://dx.doi.org/10.1038/nmat1134
8.
8. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, Nat. Photonics 3, 591 (2009).
http://dx.doi.org/10.1038/nphoton.2009.167
9.
9. W. W. Duley, Opt. Commun. 51, 160 (1984).
http://dx.doi.org/10.1016/0030-4018(84)90226-8
10.
10. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, and T. Venlatesan, Appl. Phys. Lett. 80, 1529 (2002).
http://dx.doi.org/10.1063/1.1456266
11.
11. H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, B. Yao, and D. Z. Shen, Appl. Phys. Lett. 99, 101110 (2011).
http://dx.doi.org/10.1063/1.3637575
12.
12. P.-N. Ni, C.-X. Shan, S.-P. Wang, B.-H. Li, Z.-Z. Zhang, and D.-Z. Shen, Opt. Lett. 37, 1568 (2012).
http://dx.doi.org/10.1364/OL.37.001568
13.
13. P.-N. Ni, C.-X. Shan, B.-H. Li, and D.-Z. Shen, Appl. Phys. Lett. 104, 032107 (2014).
http://dx.doi.org/10.1063/1.4862789
14.
14. K. J. Chang, S. Froyen, and M. L. Choen, J. Phys. C: Solid State Phys. 16, 3475 (1983).
http://dx.doi.org/10.1088/0022-3719/16/18/017
15.
15. R. E. Ouenzerfi, S. Ono, A. Quema, M. Goto, M. Sakaki, and N. Sarukura, J. Appl. Phys. 96, 7655 (2004).
http://dx.doi.org/10.1063/1.1808474
16.
16. T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D. A. Pawlak, K. Shimamura, and T. Fukuda, Jpn. J. Appl. Phys. 41, L365 (2002).
http://dx.doi.org/10.1143/JJAP.41.L365
17.
17. N. Sarukura, H. Murakami, E. Estacio, S. Ono, R. E. Ouenzerfi, M. Cadatal, T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, A. Yoshikawa, and T. Fukuda, Opt. Mater. 30, 15 (2007).
http://dx.doi.org/10.1016/j.optmat.2006.11.031
18.
18. Y. Hatanaka, H. Yanagi, T. Nawata, Y. Inui, T. Mabuchi, K. Yasumura, E. Nishijima, and T. Fukuda, Proc. SPIE 5754, 1279 (2005).
http://dx.doi.org/10.1117/12.600318
19.
19. T. Kozeki, Y. Suzuki, M. Sakai, H. Ohtake, N. Sarukura, Z. Liu, K. Shimamura, K. Nakano, and T. Fukuda, J. Cryst. Growth 229, 501 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01217-9
20.
20. A. Yoshikawa, T. Yanagida, Y. Yokota, N. Kawaguchi, S. Ishizu, K. Fukuda, T. Suyama, K. J. Kim, J. Pejchal, M. Nikl, K. Watanabe, M. Miyake, M. Baba, and K. Kamada, IEEE Trans. Nucl. Sci. 56, 3796 (2009).
http://dx.doi.org/10.1109/TNS.2009.2033115
21.
21. N. Kawaguchi, T. Yanagida, A. Novoselov, K. J. Kim, K. Fukuda, A. Yoshikawa, M. Miyake, and M. Baba, IEEE Nucl. Sci. Symp. Conf. Rec. 2-363, 1174 (2008).
22.
22. R. Visser, P. Dorenbost, C. W. E. van Eijk, A. Meijerink, and H. W. den Hartog, J. Phys.: Condens. Matter 5, 8437 (1993).
http://dx.doi.org/10.1088/0953-8984/5/44/029
23.
23. S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, Appl. Opt. 41, 7556 (2002).
http://dx.doi.org/10.1364/AO.41.007556
24.
24. R. W. Waynant and P. H. Klein, Appl. Phys. Lett. 46, 14 (1985).
http://dx.doi.org/10.1063/1.95833
25.
25. K. Fukuda, S. Ishizu, N. Kawaguchi, T. Suyama, T. Yanagida, Y. Yokota, M. Nikl, and A. Yoshikawa, Opt. Mater. 33, 1143 (2011).
http://dx.doi.org/10.1016/j.optmat.2010.10.054
26.
26. A. C. Cefalas, M. A. Dubinskii, E. Sarantopoulou, R. Y. Abdulsabirov, S. L. Korableva, A. K. Naumov, V. V. Semashko, and C. A. Nicolades, Laser Chem. 13, 143 (1993).
http://dx.doi.org/10.1155/1993/75972
27.
27. J. L. Jansons, V. J. Krumins, Z. A. Rachko, and J. A. Valbis, Solid State Commun. 67, 183 (1988).
http://dx.doi.org/10.1016/0038-1098(88)90960-X
28.
28. M. Sahnoun, M. Zbiri, C. Daul, R. Khenata, H. Baltache, and M. Driz, Mater. Chem. Phys. 91, 185 (2005).
http://dx.doi.org/10.1016/j.matchemphys.2004.11.019
29.
29. M. Ieda, T. Ishimaru, S. Ono, K. Yamanoi, M. C. Raduban, T. Shimizu, N. Sarukura, K. Fukuda, T. Suyama, Y. Yokota, T. Yanagida, and A. Yoshikawa, Jpn. J. Appl. Phys. 51, 022603 (2012).
http://dx.doi.org/10.7567/JJAP.51.022603
30.
30. T. Ishimaru, M. Ieda, S. Ono, Y. Yokota, T. Yanagida, and A. Yoshikawa, Thin Solid Films 534, 12 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.10.122
31.
31. R. K. Singh and J. Narayan, Phys. Rev. B 41, 8843 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.8843
32.
32. J. Heber, C. Muhlig, W. Triebel, N. Danz, R. Thielsch, and N. Kaiser, Appl. Phys. A 76, 123 (2003).
http://dx.doi.org/10.1007/s00339-002-1502-9
33.
33. M. Tanemura, J. Tanaka, K. Itoh, Y. Fujimoto, Y. Agawa, L. Miao, and S. Tanemura, Appl. Phys. Lett. 86, 113107 (2005).
http://dx.doi.org/10.1063/1.1884749
34.
34. M. Tanemura, T. Okita, J. Tanaka, M. Kitazawa, K. Itoh, L. Miao, S. Tanemura, S. P. Lau, H. Y. Yang, and L. Huang, IEEE Trans. Nanotechnol. 5, 587 (2006).
http://dx.doi.org/10.1109/TNANO.2006.880428
35.
35. W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
http://dx.doi.org/10.1126/science.270.5239.1179
36.
36. N. de Jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, Nature (London) 420, 393 (2002).
http://dx.doi.org/10.1038/nature01233
37.
37. R. C. Che, L.-M. Peng, and M. S. Wang, Appl. Phys. Lett. 85, 4753 (2004).
http://dx.doi.org/10.1063/1.1824177
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4871915
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4871915
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4871915
2014-04-22
2016-07-30

Abstract

We demonstrated a field emission lamp by employing a KMgF thin film as a solid-state vacuum ultraviolet phosphor. The output power of the lamp was 2 W at an extraction voltage of 800 V and acceleration voltage of 1800 V, and it operated at wavelengths 140–220 nm, which is the shortest wavelength reported for solid-state phosphor lamps. The thin film was grown on MgF substrate by pulsed laser deposition. Its conversion efficiency was almost equivalent to a single KMgF crystal, and it had emission peaks of 155 and 180 nm in wavelength. These peaks are attributed to transitions from the valence anion band to the outermost core cation band and correspond well with emission peaks previously reported from the crystal. Additionally, we obtained a thermal-free and low-power consumption lamp by employing carbon nanofibres (CNFs) as a field emitter. A CNF emitter was easily grown at room temperature and can be grown on flexible materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4871915.html;jsessionid=flvSkH5V2O3Y-HI02jjpnqVE.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4871915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4871915&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4871915'
Right1,Right2,Right3,