Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. N. Vasilets, A. V. Kuznetsov, and V. I. Sevastianov, J. Biomed. Mater. Res., Part A 69A, 428 (2004).
2. S. Lerouge, A. C. Fozza, M. R. Wertheimer, R. Marchand, and L’H. Yahia, Plasmas Polym. 5, 31 (2000).
3. P. J. Key and R. C. Preston, J. Phys. E: Sci. Instrum. 13, 866 (1980).
4. J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, Rev. Sci. Instrum. 68, 1360 (1997).
5. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London) 441, 325 (2006).
6. T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, Nat. Photonics 4, 767 (2010).
7. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004).
8. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, Nat. Photonics 3, 591 (2009).
9. W. W. Duley, Opt. Commun. 51, 160 (1984).
10. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, and T. Venlatesan, Appl. Phys. Lett. 80, 1529 (2002).
11. H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, B. Yao, and D. Z. Shen, Appl. Phys. Lett. 99, 101110 (2011).
12. P.-N. Ni, C.-X. Shan, S.-P. Wang, B.-H. Li, Z.-Z. Zhang, and D.-Z. Shen, Opt. Lett. 37, 1568 (2012).
13. P.-N. Ni, C.-X. Shan, B.-H. Li, and D.-Z. Shen, Appl. Phys. Lett. 104, 032107 (2014).
14. K. J. Chang, S. Froyen, and M. L. Choen, J. Phys. C: Solid State Phys. 16, 3475 (1983).
15. R. E. Ouenzerfi, S. Ono, A. Quema, M. Goto, M. Sakaki, and N. Sarukura, J. Appl. Phys. 96, 7655 (2004).
16. T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D. A. Pawlak, K. Shimamura, and T. Fukuda, Jpn. J. Appl. Phys. 41, L365 (2002).
17. N. Sarukura, H. Murakami, E. Estacio, S. Ono, R. E. Ouenzerfi, M. Cadatal, T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, A. Yoshikawa, and T. Fukuda, Opt. Mater. 30, 15 (2007).
18. Y. Hatanaka, H. Yanagi, T. Nawata, Y. Inui, T. Mabuchi, K. Yasumura, E. Nishijima, and T. Fukuda, Proc. SPIE 5754, 1279 (2005).
19. T. Kozeki, Y. Suzuki, M. Sakai, H. Ohtake, N. Sarukura, Z. Liu, K. Shimamura, K. Nakano, and T. Fukuda, J. Cryst. Growth 229, 501 (2001).
20. A. Yoshikawa, T. Yanagida, Y. Yokota, N. Kawaguchi, S. Ishizu, K. Fukuda, T. Suyama, K. J. Kim, J. Pejchal, M. Nikl, K. Watanabe, M. Miyake, M. Baba, and K. Kamada, IEEE Trans. Nucl. Sci. 56, 3796 (2009).
21. N. Kawaguchi, T. Yanagida, A. Novoselov, K. J. Kim, K. Fukuda, A. Yoshikawa, M. Miyake, and M. Baba, IEEE Nucl. Sci. Symp. Conf. Rec. 2-363, 1174 (2008).
22. R. Visser, P. Dorenbost, C. W. E. van Eijk, A. Meijerink, and H. W. den Hartog, J. Phys.: Condens. Matter 5, 8437 (1993).
23. S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, Appl. Opt. 41, 7556 (2002).
24. R. W. Waynant and P. H. Klein, Appl. Phys. Lett. 46, 14 (1985).
25. K. Fukuda, S. Ishizu, N. Kawaguchi, T. Suyama, T. Yanagida, Y. Yokota, M. Nikl, and A. Yoshikawa, Opt. Mater. 33, 1143 (2011).
26. A. C. Cefalas, M. A. Dubinskii, E. Sarantopoulou, R. Y. Abdulsabirov, S. L. Korableva, A. K. Naumov, V. V. Semashko, and C. A. Nicolades, Laser Chem. 13, 143 (1993).
27. J. L. Jansons, V. J. Krumins, Z. A. Rachko, and J. A. Valbis, Solid State Commun. 67, 183 (1988).
28. M. Sahnoun, M. Zbiri, C. Daul, R. Khenata, H. Baltache, and M. Driz, Mater. Chem. Phys. 91, 185 (2005).
29. M. Ieda, T. Ishimaru, S. Ono, K. Yamanoi, M. C. Raduban, T. Shimizu, N. Sarukura, K. Fukuda, T. Suyama, Y. Yokota, T. Yanagida, and A. Yoshikawa, Jpn. J. Appl. Phys. 51, 022603 (2012).
30. T. Ishimaru, M. Ieda, S. Ono, Y. Yokota, T. Yanagida, and A. Yoshikawa, Thin Solid Films 534, 12 (2013).
31. R. K. Singh and J. Narayan, Phys. Rev. B 41, 8843 (1990).
32. J. Heber, C. Muhlig, W. Triebel, N. Danz, R. Thielsch, and N. Kaiser, Appl. Phys. A 76, 123 (2003).
33. M. Tanemura, J. Tanaka, K. Itoh, Y. Fujimoto, Y. Agawa, L. Miao, and S. Tanemura, Appl. Phys. Lett. 86, 113107 (2005).
34. M. Tanemura, T. Okita, J. Tanaka, M. Kitazawa, K. Itoh, L. Miao, S. Tanemura, S. P. Lau, H. Y. Yang, and L. Huang, IEEE Trans. Nanotechnol. 5, 587 (2006).
35. W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
36. N. de Jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, Nature (London) 420, 393 (2002).
37. R. C. Che, L.-M. Peng, and M. S. Wang, Appl. Phys. Lett. 85, 4753 (2004).

Data & Media loading...


Article metrics loading...



We demonstrated a field emission lamp by employing a KMgF thin film as a solid-state vacuum ultraviolet phosphor. The output power of the lamp was 2 W at an extraction voltage of 800 V and acceleration voltage of 1800 V, and it operated at wavelengths 140–220 nm, which is the shortest wavelength reported for solid-state phosphor lamps. The thin film was grown on MgF substrate by pulsed laser deposition. Its conversion efficiency was almost equivalent to a single KMgF crystal, and it had emission peaks of 155 and 180 nm in wavelength. These peaks are attributed to transitions from the valence anion band to the outermost core cation band and correspond well with emission peaks previously reported from the crystal. Additionally, we obtained a thermal-free and low-power consumption lamp by employing carbon nanofibres (CNFs) as a field emitter. A CNF emitter was easily grown at room temperature and can be grown on flexible materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd