Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/4/10.1063/1.4872060
1.
1. D. C. Larbalestier, A. Gurevich, D. M. Feldmann and A. A. Polyanskii, Nature (London) 414, 368 (2001).
http://dx.doi.org/10.1038/35104654
2.
2. V. Selvamanickam, in Conference on Coated Conductors for Applications (CCA 2012), Heidelberg, Germany, 14–16 November 2012.
3.
3. U. P. Trociewitz, M. Dalban-Canassy, M. Hannion, D. K. Hilton, J. Jaroszynski, P. Noyes, Y. Viouchkov, H. W. Weijers, and D. C. Larbalestier, Appl. Phys. Lett. 99, 202506 (2011).
http://dx.doi.org/10.1063/1.3662963
4.
4. D. C. Larbalestier, J. Jiang, U. P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N. C. Craig, P. J. Lee, and E. E. Hellstrom, Nat. Mater. 13, 375 (2014).
http://dx.doi.org/10.1038/nmat3887
5.
5. H. W. Weijers, U. P. Trociewitz, W. D. Markiewicz, J. Jiang, D. Myers, E. E. Hellstrom, A. Xu, J. Jaroszynski, P. Noyes, Y. Viouchkov, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 20, 576 (2010).
http://dx.doi.org/10.1109/TASC.2010.2043080
6.
6. W. D. Markiewicz, D. C. Larbalestier, H. W. Weijers, A. J. Voran, K. W. Pickard, W. R. Sheppard, J. Jaroszynski, A. Xu, R. P. Walsh, J. Lu, A. V. Gavrilin, and P. D. Noyes, IEEE Trans. Appl. Supercond. 22, 4300704 (2012).
http://dx.doi.org/10.1109/TASC.2011.2174952
7.
7. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.1125
8.
8. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, Nat. Mater. 6, 631 (2007).
http://dx.doi.org/10.1038/nmat1989
9.
9. J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley, and D. E. Peterson, Nat. Mater. 3, 439 (2004).
http://dx.doi.org/10.1038/nmat1156
10.
10. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, and D. F. Lee, Science 311, 1911 (2006).
http://dx.doi.org/10.1126/science.1124872
11.
11. Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M. P. Paranthaman, T. Aytug, A. Goyal, and D. Lee, Appl. Phys. Lett. 94, 062513 (2009).
http://dx.doi.org/10.1063/1.3082037
12.
12. A. Xu, V. Braccini, J. Jaroszynski, Y. Xin, and D. C. Larbalestier, Phys. Rev. B 86, 115416 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115416
13.
13. A. Xu, J. Jaroszynski, F. Kametani, Z. Chen, D. C. Larbalestier, Y. L. Viouchkov, Y. Chen, Y. Xie, and V. Selvamanickam, Supercond. Sci. Technol. 23, 014003 (2010).
http://dx.doi.org/10.1088/0953-2048/23/1/014003
14.
14. V. Braccini, A. Xu, J. Jaroszynski, Y. Xin, D. C. Larbalestier, Y. Chen, G. Carota, J. Dackow, I. Kesgin, Y. Yao, A. Guevara, T. Shi, and V. Selvamanickam, Supercond. Sci. Technol. 24, 035001 (2011).
http://dx.doi.org/10.1088/0953-2048/24/3/035001
15.
15. T. Aytug, M. Paranthaman, E. D. Specht, Y. Zhang, K. Kim, Y. L. Zuev, C. Cantoni, A. Goyal, D. K. Christen, V. A. Maroni, Y. Chen, and V. Selvamanickam, Supercond. Sci. Technol. 23, 014005 (2010).
http://dx.doi.org/10.1088/0953-2048/23/1/014005
16.
16. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita, Supercond. Sci. Technol. 21, 032002 (2008).
http://dx.doi.org/10.1088/0953-2048/21/3/032002
17.
17. S. H. Wee, Y. L. Zuev, C. Cantoni, and A. Goyal, Sci. Rep. 3, 2310 (2013).
http://dx.doi.org/10.1038/srep02310
18.
18. V. Selvamanickam, Y. Chen, T. Shi, Y. Liu, N. D. Khatri, J. Liu, Y. Yao, X. Xiong, C. Lei, S. Soloveichik, E. Galstyan, and G. Majkic, Supercond. Sci. Technol. 26, 035006 (2013).
http://dx.doi.org/10.1088/0953-2048/26/3/035006
19.
19. J. Gutiérrez, A. Llordés, J. Gázquez, M. Gibert, N. Romà, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, and X. Obradors, Nat. Mater. 6, 367 (2007).
http://dx.doi.org/10.1038/nmat1893
20.
20. J. D. Weiss, C. Tarantini, J. Jiang, F. Kametani, A. A. Polyanskii, D. C. Larbalestier, and E. E. Hellstrom, Nat. Mater. 11, 682 (2012).
http://dx.doi.org/10.1038/nmat3333
21.
21. C. Meingast and D. C. Larbalestier, J. Appl. Phys. 66, 5971 (1989).
http://dx.doi.org/10.1063/1.343625
22.
22. J. Jiang, H. Miao, Y. Huang, S. Hong, J. A. Parrell, C. Scheuerlein, M. D. Michiel, K. Ghosh, U. P. Trociewitz, E. E. Hellstrom, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 23, 6400206 (2013).
http://dx.doi.org/10.1109/TASC.2013.2237873
23.
23. B. J. Senkowicz, J. E. Giencke, S. Patnaik, C. B. Eom, E. E. Hellstrom, and D. C. Larbalestier, Appl. Phys. Lett. 86, 202502 (2005).
http://dx.doi.org/10.1063/1.1920428
24.
24. V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, M. Martchevski, A. Rar, Y. Qiao, R. M. Schmidt, A. Knoll, K. P. Lenseth, and C. S. Weber, IEEE Trans. Appl. Supercond. 19, 3225 (2009).
http://dx.doi.org/10.1109/TASC.2009.2018792
25.
25. H. Matsui, H. Ogiso, H. Yamasaki, T. Kumagai, M. Sohma, I. Yamaguchi, and T. Manabe, Appl. Phys. Lett. 101, 232601 (2012).
http://dx.doi.org/10.1063/1.4769836
26.
26. Y. Jia, M. LeRoux, D. J. Miller, J. G. Wen, W. K. Kwok, U. Welp, M. W. Rupich, X. Li, S. Sathyamurthy, S. Fleshler, A. P. Malozemoff, A. Kayani, O. Ayala-Valenzuela, and L. Civale, Appl. Phys. Lett. 103, 122601 (2013).
http://dx.doi.org/10.1063/1.4821440
27.
27. C. J. van der Beek, M. Konczykowski, A. Abal'oshev, I. Abal'osheva, P. Gierlowski, S. J. Lewandowski, M. V. Indenbom, and S. Barbanera, Phys. Rev. B 66, 024523 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.024523
28.
28. M. Miura, B. Maiorov, S. A. Baily, N. Haberkorn, J. O. Willis, K. Marken, T. Izumi, Y. Shiohara, and L. Civale, Phys. Rev. B 83, 184519 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184519
29.
29. A. O. Ijaduola, J. R. Thompson, R. Feenstra, D. K. Christen, A. A. Gapud, and X. Song, Phys. Rev. B 73, 134502 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134502
30.
30. M. Miura, S. A. Baily, B. Maiorov, L. Civale, J. O. Willis, K. Marken, T. Izumi, K. Tanabe, and Y. Shiohara, Appl. Phys. Lett. 96, 072506 (2010).
http://dx.doi.org/10.1063/1.3310014
31.
31. A. Kiessling, J. Hänisch, T. Thersleff, E. Reich, M. Weigand, R. Hühne, M. Sparing, B. Holzapfel, J. H. Durrell, and L. Schultz, Supercond. Sci. Technol. 24, 055018 (2011).
http://dx.doi.org/10.1088/0953-2048/24/5/055018
32.
32. J. Figueras, T. Puig, X. Obradors, W. K. Kwok, L. Paulius, G. W. Crabtree, and G. Deutscher, Nat. Phys. 2, 402 (2006).
http://dx.doi.org/10.1038/nphys311
33.
33. M. Muralidhar, N. Sakai, N. Chikumoto, M. Jirsa, T. Machi, M. Nishiyama, Y. Wu, and M. Murakami, Phys. Rev. Lett. 89, 237001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.237001
34.
34. A. Llordés, A. Palau, J. Gázquez, M. Coll, R. Vlad, A. Pomar, J. Arbiol, R. Guzmán, S. Ye, V. Rouco, F. Sandiumenge, S. Ricart, T. Puig, M. Varela, D. Chateigner, J. Vanacken, J. Gutiérrez, V. Moshchalkov, G. Deutscher, C. Magen, and X. Obradors, Nat. Mater. 11, 329 (2012).
http://dx.doi.org/10.1038/nmat3247
35.
35. C. Cantoni, Y. Gao, S. H. Wee, E. D. Specht, J. Gazquez, J. Meng, S. J. Pennycook, and A. Goyal, ACS Nano 5, 4783 (2011).
http://dx.doi.org/10.1021/nn2007628
36.
36. K. Matsumoto and P. Mele, Supercond. Sci. Technol. 23, 014001 (2010).
http://dx.doi.org/10.1088/0953-2048/23/1/014001
37.
37. S. A. Harrington, J. H. Durrell, B. Maiorov, H. Wang, S. C. Wimbush, A. Kursumovic, J. H. Lee, and J. L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 022001 (2009).
http://dx.doi.org/10.1088/0953-2048/22/2/022001
38.
38. D. M. Feldmann, T. G. Holesinger, B. Maiorov, S. R. Foltyn, J. Y. Coulter, and I. Apodaca, Supercond. Sci. Technol. 23, 095004 (2010).
http://dx.doi.org/10.1088/0953-2048/23/9/095004
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/4/10.1063/1.4872060
Loading
/content/aip/journal/aplmater/2/4/10.1063/1.4872060
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/4/10.1063/1.4872060
2014-04-23
2016-09-26

Abstract

Applications of REBCO coated conductors are now being developed for a very wide range of temperatures and magnetic fields and it is not yet clear whether vortex pinning strategies aimed for high temperature, low field operation are equally valid at lower temperatures and higher fields. A detailed characterization of the superconducting properties of a 15 mol. % Zr-added REBCO thin film made by metal organic chemical vapor deposition, from 4.2 to 77 K under magnetic fields up to 31 T is presented in this article. Even at a such high level of Zr addition, depression has been avoided ( = 91 K), while at the same time an exceptionally high irreversibility field ≈ 14.8 T at 77 K and a remarkably high vortex pinning force density ≈ 1.7 TN/m3 at 4.2 K have been achieved. We ascribe the excellent pinning performance at high temperatures to the high density (equivalent vortex matching field ∼7 T) of self-assembled BZO nanorods, while the low temperature pinning force is enhanced by large additional pinning which we ascribe to strain-induced point defects induced in the REBCO matrix by the BZO nanorods. Our results suggest even more room for further performance enhancement of commercial REBCO coated conductors and point the way to REBCO coil applications at liquid nitrogen temperatures since the critical current density (//) characteristic at 77 K are now almost identical to those of fully optimized Nb-Ti at 4 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/4/1.4872060.html;jsessionid=kARp2kJJ9ExVNa0qp6bX8ZXN.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/4/10.1063/1.4872060&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/4/10.1063/1.4872060&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/4/10.1063/1.4872060'
Top,Right1,Right2,Right3,