Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. C. Larbalestier, A. Gurevich, D. M. Feldmann and A. A. Polyanskii, Nature (London) 414, 368 (2001).
2. V. Selvamanickam, in Conference on Coated Conductors for Applications (CCA 2012), Heidelberg, Germany, 14–16 November 2012.
3. U. P. Trociewitz, M. Dalban-Canassy, M. Hannion, D. K. Hilton, J. Jaroszynski, P. Noyes, Y. Viouchkov, H. W. Weijers, and D. C. Larbalestier, Appl. Phys. Lett. 99, 202506 (2011).
4. D. C. Larbalestier, J. Jiang, U. P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N. C. Craig, P. J. Lee, and E. E. Hellstrom, Nat. Mater. 13, 375 (2014).
5. H. W. Weijers, U. P. Trociewitz, W. D. Markiewicz, J. Jiang, D. Myers, E. E. Hellstrom, A. Xu, J. Jaroszynski, P. Noyes, Y. Viouchkov, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 20, 576 (2010).
6. W. D. Markiewicz, D. C. Larbalestier, H. W. Weijers, A. J. Voran, K. W. Pickard, W. R. Sheppard, J. Jaroszynski, A. Xu, R. P. Walsh, J. Lu, A. V. Gavrilin, and P. D. Noyes, IEEE Trans. Appl. Supercond. 22, 4300704 (2012).
7. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
8. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, Nat. Mater. 6, 631 (2007).
9. J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley, and D. E. Peterson, Nat. Mater. 3, 439 (2004).
10. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, and D. F. Lee, Science 311, 1911 (2006).
11. Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M. P. Paranthaman, T. Aytug, A. Goyal, and D. Lee, Appl. Phys. Lett. 94, 062513 (2009).
12. A. Xu, V. Braccini, J. Jaroszynski, Y. Xin, and D. C. Larbalestier, Phys. Rev. B 86, 115416 (2012).
13. A. Xu, J. Jaroszynski, F. Kametani, Z. Chen, D. C. Larbalestier, Y. L. Viouchkov, Y. Chen, Y. Xie, and V. Selvamanickam, Supercond. Sci. Technol. 23, 014003 (2010).
14. V. Braccini, A. Xu, J. Jaroszynski, Y. Xin, D. C. Larbalestier, Y. Chen, G. Carota, J. Dackow, I. Kesgin, Y. Yao, A. Guevara, T. Shi, and V. Selvamanickam, Supercond. Sci. Technol. 24, 035001 (2011).
15. T. Aytug, M. Paranthaman, E. D. Specht, Y. Zhang, K. Kim, Y. L. Zuev, C. Cantoni, A. Goyal, D. K. Christen, V. A. Maroni, Y. Chen, and V. Selvamanickam, Supercond. Sci. Technol. 23, 014005 (2010).
16. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita, Supercond. Sci. Technol. 21, 032002 (2008).
17. S. H. Wee, Y. L. Zuev, C. Cantoni, and A. Goyal, Sci. Rep. 3, 2310 (2013).
18. V. Selvamanickam, Y. Chen, T. Shi, Y. Liu, N. D. Khatri, J. Liu, Y. Yao, X. Xiong, C. Lei, S. Soloveichik, E. Galstyan, and G. Majkic, Supercond. Sci. Technol. 26, 035006 (2013).
19. J. Gutiérrez, A. Llordés, J. Gázquez, M. Gibert, N. Romà, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, and X. Obradors, Nat. Mater. 6, 367 (2007).
20. J. D. Weiss, C. Tarantini, J. Jiang, F. Kametani, A. A. Polyanskii, D. C. Larbalestier, and E. E. Hellstrom, Nat. Mater. 11, 682 (2012).
21. C. Meingast and D. C. Larbalestier, J. Appl. Phys. 66, 5971 (1989).
22. J. Jiang, H. Miao, Y. Huang, S. Hong, J. A. Parrell, C. Scheuerlein, M. D. Michiel, K. Ghosh, U. P. Trociewitz, E. E. Hellstrom, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 23, 6400206 (2013).
23. B. J. Senkowicz, J. E. Giencke, S. Patnaik, C. B. Eom, E. E. Hellstrom, and D. C. Larbalestier, Appl. Phys. Lett. 86, 202502 (2005).
24. V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, M. Martchevski, A. Rar, Y. Qiao, R. M. Schmidt, A. Knoll, K. P. Lenseth, and C. S. Weber, IEEE Trans. Appl. Supercond. 19, 3225 (2009).
25. H. Matsui, H. Ogiso, H. Yamasaki, T. Kumagai, M. Sohma, I. Yamaguchi, and T. Manabe, Appl. Phys. Lett. 101, 232601 (2012).
26. Y. Jia, M. LeRoux, D. J. Miller, J. G. Wen, W. K. Kwok, U. Welp, M. W. Rupich, X. Li, S. Sathyamurthy, S. Fleshler, A. P. Malozemoff, A. Kayani, O. Ayala-Valenzuela, and L. Civale, Appl. Phys. Lett. 103, 122601 (2013).
27. C. J. van der Beek, M. Konczykowski, A. Abal'oshev, I. Abal'osheva, P. Gierlowski, S. J. Lewandowski, M. V. Indenbom, and S. Barbanera, Phys. Rev. B 66, 024523 (2002).
28. M. Miura, B. Maiorov, S. A. Baily, N. Haberkorn, J. O. Willis, K. Marken, T. Izumi, Y. Shiohara, and L. Civale, Phys. Rev. B 83, 184519 (2011).
29. A. O. Ijaduola, J. R. Thompson, R. Feenstra, D. K. Christen, A. A. Gapud, and X. Song, Phys. Rev. B 73, 134502 (2006).
30. M. Miura, S. A. Baily, B. Maiorov, L. Civale, J. O. Willis, K. Marken, T. Izumi, K. Tanabe, and Y. Shiohara, Appl. Phys. Lett. 96, 072506 (2010).
31. A. Kiessling, J. Hänisch, T. Thersleff, E. Reich, M. Weigand, R. Hühne, M. Sparing, B. Holzapfel, J. H. Durrell, and L. Schultz, Supercond. Sci. Technol. 24, 055018 (2011).
32. J. Figueras, T. Puig, X. Obradors, W. K. Kwok, L. Paulius, G. W. Crabtree, and G. Deutscher, Nat. Phys. 2, 402 (2006).
33. M. Muralidhar, N. Sakai, N. Chikumoto, M. Jirsa, T. Machi, M. Nishiyama, Y. Wu, and M. Murakami, Phys. Rev. Lett. 89, 237001 (2002).
34. A. Llordés, A. Palau, J. Gázquez, M. Coll, R. Vlad, A. Pomar, J. Arbiol, R. Guzmán, S. Ye, V. Rouco, F. Sandiumenge, S. Ricart, T. Puig, M. Varela, D. Chateigner, J. Vanacken, J. Gutiérrez, V. Moshchalkov, G. Deutscher, C. Magen, and X. Obradors, Nat. Mater. 11, 329 (2012).
35. C. Cantoni, Y. Gao, S. H. Wee, E. D. Specht, J. Gazquez, J. Meng, S. J. Pennycook, and A. Goyal, ACS Nano 5, 4783 (2011).
36. K. Matsumoto and P. Mele, Supercond. Sci. Technol. 23, 014001 (2010).
37. S. A. Harrington, J. H. Durrell, B. Maiorov, H. Wang, S. C. Wimbush, A. Kursumovic, J. H. Lee, and J. L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 022001 (2009).
38. D. M. Feldmann, T. G. Holesinger, B. Maiorov, S. R. Foltyn, J. Y. Coulter, and I. Apodaca, Supercond. Sci. Technol. 23, 095004 (2010).

Data & Media loading...


Article metrics loading...



Applications of REBCO coated conductors are now being developed for a very wide range of temperatures and magnetic fields and it is not yet clear whether vortex pinning strategies aimed for high temperature, low field operation are equally valid at lower temperatures and higher fields. A detailed characterization of the superconducting properties of a 15 mol. % Zr-added REBCO thin film made by metal organic chemical vapor deposition, from 4.2 to 77 K under magnetic fields up to 31 T is presented in this article. Even at a such high level of Zr addition, depression has been avoided ( = 91 K), while at the same time an exceptionally high irreversibility field ≈ 14.8 T at 77 K and a remarkably high vortex pinning force density ≈ 1.7 TN/m3 at 4.2 K have been achieved. We ascribe the excellent pinning performance at high temperatures to the high density (equivalent vortex matching field ∼7 T) of self-assembled BZO nanorods, while the low temperature pinning force is enhanced by large additional pinning which we ascribe to strain-induced point defects induced in the REBCO matrix by the BZO nanorods. Our results suggest even more room for further performance enhancement of commercial REBCO coated conductors and point the way to REBCO coil applications at liquid nitrogen temperatures since the critical current density (//) characteristic at 77 K are now almost identical to those of fully optimized Nb-Ti at 4 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd