1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/5/10.1063/1.4874455
1.
1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
http://dx.doi.org/10.1038/nmat1284
2.
2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
http://dx.doi.org/10.1063/1.122077
3.
3. Z. L. Wang, J. Phys.: Condens. Mat. 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
4.
4. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. Lett. 38, L1205 (1999).
http://dx.doi.org/10.1143/JJAP.38.L1205
5.
5. C. Y. Huang, Y. J. Lee, T. Y. Lin, S. L. Chang, J. T. Lian, H. M. Lin, N. C. Chen, and Y. J. Yang, Opt. Lett. 39, 805 (2014).
http://dx.doi.org/10.1364/OL.39.000805
6.
6. B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu, and D. L. Wang, Nano Lett. 7, 323 (2007).
http://dx.doi.org/10.1021/nl062410c
7.
7. A. Khan, K. Balakrishnan, and T. Katona, Nat. Photon. 2, 77 (2008).
http://dx.doi.org/10.1038/nphoton.2007.293
8.
8. Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).
http://dx.doi.org/10.1063/1.1615308
9.
9. S. J. An and G. C. Yi, Appl. Phys. Lett. 91, 123109 (2007).
http://dx.doi.org/10.1063/1.2786852
10.
10. C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, Appl. Phys. Lett. 93, 081111 (2008).
http://dx.doi.org/10.1063/1.2975165
11.
11. H. Huang, G. Fang, Y. Li, S. Li, X. Mo, H. Long, H. Wang, D. L. Carroll, and X. Zhao, Appl. Phys. Lett. 100, 233502 (2012).
http://dx.doi.org/10.1063/1.4724212
12.
12. X. Y. Liu, C. X. Shan, C. Jiao, S. P. Wang, H. F. Zhao, and D. Z. Shen, Opt. Lett. 39, 422 (2014).
http://dx.doi.org/10.1364/OL.39.000422
13.
13. E. Lai, W. Kim, and P. Yang, Nano Res. 1, 123 (2008).
http://dx.doi.org/10.1007/s12274-008-8017-4
14.
14. T. Nakayama and M. Murayama, J. Cryst. Growth 214–215, 299 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00096-8
15.
15. W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004).
http://dx.doi.org/10.1002/adma.200305729
16.
16. H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
http://dx.doi.org/10.1021/nl049615a
17.
17. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, Nano Lett. 8, 1219 (2008).
http://dx.doi.org/10.1021/nl080340z
18.
18. S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. H. Ryou, H. J. Kim, Za. Lochner, S. Choi, R. Dupuis, and Z. L. Wang, Adv. Mater. 22, 4749 (2010).
http://dx.doi.org/10.1002/adma.201002134
19.
19. H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, Adv. Funct. Mater. 19, 3471 (2009).
http://dx.doi.org/10.1002/adfm.200900815
20.
20. Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 94, 141111 (2009).
http://dx.doi.org/10.1063/1.3119192
21.
21. Y. C. Yao, M. T. Tsai, H. C. Hsu, L. W. She, C. M. Cheng, Y. C. Chen, C. J. Wu, and Y. J. Lee, Opt. Exp. 20, 3479 (2012).
http://dx.doi.org/10.1364/OE.20.003479
22.
22. A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, Nanotechnology 20, 445201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/44/445201
23.
23. E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).
24.
24. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76(16), 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4874455
Loading
/content/aip/journal/aplmater/2/5/10.1063/1.4874455
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/5/10.1063/1.4874455
2014-05-02
2014-09-03

Abstract

High-efficient ZnO-based nanorod array light-emitting diodes (LEDs) were grown by an oblique-angle deposition scheme. Due to the shadowing effect, the inclined ZnO vapor-flow was selectively deposited on the tip surfaces of pre-fabricated p-GaN nanorod arrays, resulting in the formation of nanosized heterojunctions. The LED architecture composed of the slanted n-ZnO film on p-GaN nanorod arrays exhibits a well-behaving current rectification of junction diode with low turn-on voltage of 4.7 V, and stably emits bluish-white luminescence with dominant peak of 390 nm under the operation of forward injection currents. In general, as the device fabrication does not involve passivation of using a polymer or sophisticated material growth techniques, the revealed scheme might be readily applied on other kinds of nanoscale optoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/5/1.4874455.html;jsessionid=4ur5h3oiaqmmt.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/5/10.1063/1.4874455&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4874455
10.1063/1.4874455
SEARCH_EXPAND_ITEM