Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
3. Z. L. Wang, J. Phys.: Condens. Mat. 16, R829 (2004).
4. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. Lett. 38, L1205 (1999).
5. C. Y. Huang, Y. J. Lee, T. Y. Lin, S. L. Chang, J. T. Lian, H. M. Lin, N. C. Chen, and Y. J. Yang, Opt. Lett. 39, 805 (2014).
6. B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu, and D. L. Wang, Nano Lett. 7, 323 (2007).
7. A. Khan, K. Balakrishnan, and T. Katona, Nat. Photon. 2, 77 (2008).
8. Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).
9. S. J. An and G. C. Yi, Appl. Phys. Lett. 91, 123109 (2007).
10. C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, Appl. Phys. Lett. 93, 081111 (2008).
11. H. Huang, G. Fang, Y. Li, S. Li, X. Mo, H. Long, H. Wang, D. L. Carroll, and X. Zhao, Appl. Phys. Lett. 100, 233502 (2012).
12. X. Y. Liu, C. X. Shan, C. Jiao, S. P. Wang, H. F. Zhao, and D. Z. Shen, Opt. Lett. 39, 422 (2014).
13. E. Lai, W. Kim, and P. Yang, Nano Res. 1, 123 (2008).
14. T. Nakayama and M. Murayama, J. Cryst. Growth 214–215, 299 (2000).
15. W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004).
16. H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
17. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, Nano Lett. 8, 1219 (2008).
18. S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. H. Ryou, H. J. Kim, Za. Lochner, S. Choi, R. Dupuis, and Z. L. Wang, Adv. Mater. 22, 4749 (2010).
19. H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, Adv. Funct. Mater. 19, 3471 (2009).
20. Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 94, 141111 (2009).
21. Y. C. Yao, M. T. Tsai, H. C. Hsu, L. W. She, C. M. Cheng, Y. C. Chen, C. J. Wu, and Y. J. Lee, Opt. Exp. 20, 3479 (2012).
22. A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, Nanotechnology 20, 445201 (2009).
23. E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).
24. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76(16), 165202 (2007).

Data & Media loading...


Article metrics loading...



High-efficient ZnO-based nanorod array light-emitting diodes (LEDs) were grown by an oblique-angle deposition scheme. Due to the shadowing effect, the inclined ZnO vapor-flow was selectively deposited on the tip surfaces of pre-fabricated p-GaN nanorod arrays, resulting in the formation of nanosized heterojunctions. The LED architecture composed of the slanted n-ZnO film on p-GaN nanorod arrays exhibits a well-behaving current rectification of junction diode with low turn-on voltage of 4.7 V, and stably emits bluish-white luminescence with dominant peak of 390 nm under the operation of forward injection currents. In general, as the device fabrication does not involve passivation of using a polymer or sophisticated material growth techniques, the revealed scheme might be readily applied on other kinds of nanoscale optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd