Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Ohori, S. Ohkubo, K. Kasai, and J. Komeno, J. Appl. Phys. 75, 3681 (1994).
2. S. W. Kaun, P. G. Burke, M. H. Wong, E. C. H. Kyle, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 101, 262102 (2012).
3. S. Krasavina, J. Appl. Phys. 105, 126104 (2009).
4. M. Gurusinghe and T. Andersson, Phys. Rev. B 67, 235308 (2003).
5. D. Look and J. Sizelove, Phys. Rev. Lett. 82, 1237 (1999).
6. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. 73, 821 (1998).
7. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
8. H. J. Kim, U. Kim et al., Appl. Phys. Express 5, 061102 (2012).
9. X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, and S.-W. Cheong, Appl. Phys. Lett. 100, 172112 (2012).
10. H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B.-G. Jeon, W.-J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).
11. H. Mun, U. Kim, H. M. Kim, C. Park, T. H. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2013).
12. H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem. 43, 1667 (2004).
13. R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp Jr., A. E. White, K. Short, W. F. Peck, and T. Kometani, Nature (London) 332, 814 (1988).
14. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
15. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).
16. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
17. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).
18. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
19. S. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides (Springer, Berlin, 2004).
20. H. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).
21. Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, and G. Ding, J. Phys. D: Appl. Phys. 43, 455401 (2010).
22. R. J. Cava, P. Gammel, B. Batlogg, J. J. Krajewski, W. F. Peck Jr., L. W. Rupp Jr., R. Felder, and R. B. van Dover, Phys. Rev. B 42, 4815 (1990).
23. H. J. Kim, J. Kim, T. H. Kim, W.-J. Lee, B.-G. Jeon, J.-Y. Park, and K. H. Kim, Phys. Rev. B 88, 125204 (2013).
24. B. G. Kim, J. Y. Jo, and S. W. Cheong, J. Solid State Chem. 197, 134 (2013).
25. H.-R. Liu, J.-H. Yang, H. J. Xiang, X. G. Gong, and S.-H. Wei, Appl. Phys. Lett. 102, 112109 (2013).
26. E. Moreira, J. M. Henriques, D. L. Azevedo, E. W. S. Caetano, V. N. Freire, and E. L. Albuquerque, J. Solid State Chem. 187, 186 (2012).
27. K. Ellmer, J. Phys. D 34, 3097 (2001).
28. R. Claessen, M. G. Smith, J. B. Goodenough, and J. W. Allen, Phys. Rev. B 47, 1788 (1993).
29. V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 100, 033713 (2006).
30. G. Herranz, F. Sanchez, B. Martinez, J. Fontcuberta, M. V. Garcia-Cuenca, C. Ferrater, M. Varela, and P. Levy, Eur. Phys. J. B 40, 439 (2004).
31. R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
32. M. F. Yan, W. W. Rhodes, and P. K. Gallagher, J. Appl. Phys. 63, 821 (1988).
33. R. V. Shende, D. S. Krueger, G. A. Rossetti Jr., and S. J. Lombardo, J. Am. Ceram. Soc. 84, 1648 (2001).
34.MTI Corporation, 860 South 19th Street, Richmond, CA 94804, USA.
35. H.-J. Bae, J. Sigman, S.-J. Park, Y.-H. Heo, L. A. Boatner, and D. P. Norton, Solid-State Electron. 48, 51 (2004).
36. P. Singh, B. J. Brandenburg, C. P. Sebastian, P. Singh, S. Singh, D. Kumar, and O. Parkash, Jpn. J. Appl. Phys. 47, 3540 (2008).
37. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
38. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).
39. A. Spinelli, M. A. Torija, C. Liu, C. Jan, and C. Leighton, Phys. Rev. B 81, 155110 (2010).
40. K. Page, T. Kolodiazhnyi, T. Proffen, A. K. Cheetham, and R. Seshadri, Phys. Rev. Lett. 101, 205502 (2008).
41. H. M. Kim et al., “Thermally stable pn-junctions based on a single transparent perovskite semiconductor BaSnO3” (preprint).
42. A. T. Aldred and J. N. Pratt, J. Chem. Eng. Data 8, 429 (1963).
43. G. Larramona and C. Gutierrez, J. Chem. Soc., Faraday Trans. 1 85, 907 (1989).
44. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

Data & Media loading...


Article metrics loading...



We studied the conduction mechanism in Sb-doped BaSnO epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO. We found that the electron mobility in BaSnO films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd