Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/5/10.1063/1.4874895
1.
1. T. Ohori, S. Ohkubo, K. Kasai, and J. Komeno, J. Appl. Phys. 75, 3681 (1994).
http://dx.doi.org/10.1063/1.356085
2.
2. S. W. Kaun, P. G. Burke, M. H. Wong, E. C. H. Kyle, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 101, 262102 (2012).
http://dx.doi.org/10.1063/1.4773510
3.
3. S. Krasavina, J. Appl. Phys. 105, 126104 (2009).
http://dx.doi.org/10.1063/1.3147744
4.
4. M. Gurusinghe and T. Andersson, Phys. Rev. B 67, 235308 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.235208
5.
5. D. Look and J. Sizelove, Phys. Rev. Lett. 82, 1237 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1237
6.
6. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. 73, 821 (1998).
http://dx.doi.org/10.1063/1.122012
7.
7. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
http://dx.doi.org/10.1063/1.366585
8.
8. H. J. Kim, U. Kim et al., Appl. Phys. Express 5, 061102 (2012).
http://dx.doi.org/10.1143/APEX.5.061102
9.
9. X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, and S.-W. Cheong, Appl. Phys. Lett. 100, 172112 (2012).
http://dx.doi.org/10.1063/1.4709415
10.
10. H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B.-G. Jeon, W.-J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165205
11.
11. H. Mun, U. Kim, H. M. Kim, C. Park, T. H. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2013).
http://dx.doi.org/10.1063/1.4812642
12.
12. H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem. 43, 1667 (2004).
http://dx.doi.org/10.1021/ic034551c
13.
13. R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp Jr., A. E. White, K. Short, W. F. Peck, and T. Kometani, Nature (London) 332, 814 (1988).
http://dx.doi.org/10.1038/332814a0
14.
14. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00352-2
15.
15. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x
16.
16. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
http://dx.doi.org/10.1038/nature02018
17.
17. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104521
18.
18. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
19.
19. S. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides (Springer, Berlin, 2004).
20.
20. H. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).
http://dx.doi.org/10.1063/1.126666
21.
21. Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, and G. Ding, J. Phys. D: Appl. Phys. 43, 455401 (2010).
http://dx.doi.org/10.1088/0022-3727/43/45/455401
22.
22. R. J. Cava, P. Gammel, B. Batlogg, J. J. Krajewski, W. F. Peck Jr., L. W. Rupp Jr., R. Felder, and R. B. van Dover, Phys. Rev. B 42, 4815 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.4815
23.
23. H. J. Kim, J. Kim, T. H. Kim, W.-J. Lee, B.-G. Jeon, J.-Y. Park, and K. H. Kim, Phys. Rev. B 88, 125204 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.125204
24.
24. B. G. Kim, J. Y. Jo, and S. W. Cheong, J. Solid State Chem. 197, 134 (2013).
http://dx.doi.org/10.1016/j.jssc.2012.08.047
25.
25. H.-R. Liu, J.-H. Yang, H. J. Xiang, X. G. Gong, and S.-H. Wei, Appl. Phys. Lett. 102, 112109 (2013).
http://dx.doi.org/10.1063/1.4798325
26.
26. E. Moreira, J. M. Henriques, D. L. Azevedo, E. W. S. Caetano, V. N. Freire, and E. L. Albuquerque, J. Solid State Chem. 187, 186 (2012).
http://dx.doi.org/10.1016/j.jssc.2011.12.027
27.
27. K. Ellmer, J. Phys. D 34, 3097 (2001).
http://dx.doi.org/10.1088/0022-3727/34/21/301
28.
28. R. Claessen, M. G. Smith, J. B. Goodenough, and J. W. Allen, Phys. Rev. B 47, 1788 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1788
29.
29. V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 100, 033713 (2006).
http://dx.doi.org/10.1063/1.2218466
30.
30. G. Herranz, F. Sanchez, B. Martinez, J. Fontcuberta, M. V. Garcia-Cuenca, C. Ferrater, M. Varela, and P. Levy, Eur. Phys. J. B 40, 439 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00207-9
31.
31. R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
http://dx.doi.org/10.1063/1.90457
32.
32. M. F. Yan, W. W. Rhodes, and P. K. Gallagher, J. Appl. Phys. 63, 821 (1988).
http://dx.doi.org/10.1063/1.340075
33.
33. R. V. Shende, D. S. Krueger, G. A. Rossetti Jr., and S. J. Lombardo, J. Am. Ceram. Soc. 84, 1648 (2001).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00893.x
34.
34.MTI Corporation, 860 South 19th Street, Richmond, CA 94804, USA. www.mtixtl.com/BTO-a-050510-S2.aspx
35.
35. H.-J. Bae, J. Sigman, S.-J. Park, Y.-H. Heo, L. A. Boatner, and D. P. Norton, Solid-State Electron. 48, 51 (2004).
http://dx.doi.org/10.1016/S0038-1101(03)00240-5
36.
36. P. Singh, B. J. Brandenburg, C. P. Sebastian, P. Singh, S. Singh, D. Kumar, and O. Parkash, Jpn. J. Appl. Phys. 47, 3540 (2008).
http://dx.doi.org/10.1143/JJAP.47.3540
37.
37. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
http://dx.doi.org/10.1063/1.1847723
38.
38. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).
http://dx.doi.org/10.1038/nmat2750
39.
39. A. Spinelli, M. A. Torija, C. Liu, C. Jan, and C. Leighton, Phys. Rev. B 81, 155110 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155110
40.
40. K. Page, T. Kolodiazhnyi, T. Proffen, A. K. Cheetham, and R. Seshadri, Phys. Rev. Lett. 101, 205502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.205502
41.
41. H. M. Kim et al., “Thermally stable pn-junctions based on a single transparent perovskite semiconductor BaSnO3” (preprint).
42.
42. A. T. Aldred and J. N. Pratt, J. Chem. Eng. Data 8, 429 (1963).
http://dx.doi.org/10.1021/je60018a043
43.
43. G. Larramona and C. Gutierrez, J. Chem. Soc., Faraday Trans. 1 85, 907 (1989).
http://dx.doi.org/10.1039/f19898500907
44.
44. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4874895
Loading
/content/aip/journal/aplmater/2/5/10.1063/1.4874895
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/5/10.1063/1.4874895
2014-05-19
2016-09-30

Abstract

We studied the conduction mechanism in Sb-doped BaSnO epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO. We found that the electron mobility in BaSnO films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/5/1.4874895.html;jsessionid=WQFhMpyTNPlBz-1JpJOEwTqJ.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/5/10.1063/1.4874895&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/5/10.1063/1.4874895&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/5/10.1063/1.4874895'
Top,Right1,Right2,Right3,