Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
2. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
3. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol'tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Sysz, A. Pearlman, A. Verevkin, and R. Sobolewski, Appl. Phys. Lett. 84, 5338 (2004).
4. G. Gol'tsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Yu. Vachtomin, I. Milostnaya, and G. Chulkova, J. Mod. Opt. 56, 1670 (2009).
5. F. Marsili, A. Gaggero, L. H. Li, A. Surrente, R. Leoni, F. Lévy, and A. Fiore, Supercond. Sci. Technol. 22, 095013 (2009).
6. G. Reithmaier, J. Senf, S. Lichtmannecker, T. Reichert, F. Flassig, A. Voss, R. Gross, and J. J. Finley, J. Appl. Phys. 113, 143507 (2013).
7. D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, A. Henry, E. Janzén, E. Pippel, J. Woltersdorf, and V. Belitsky, Supercond. Sci. Technol. 24, 035016 (2011).
8. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, Nat. Commun. 3, 1325 (2012).
9. Y. P. Gousev, G. N. Gol'tsman, B. S. Karasik, E. M. Gershenzon, A. D. Semenov, H. S. Barowski, R. S. Nebosis, K. F. Renk, and J. Infrared, Millimeter, Terahertz Waves 17, 317 (1996).
10. B. Guillet, V. Drakinskiy, R. Gunnarsson, O. Arthursson, L. Méchin, S. Cherednichenko, Y. Delorme, and J. M. Krieg, Proceedings of the 18th International Symposium on Space Terahertz Technology (National Radio Astronomy Observatory, Pasadena, CA, USA, 2007), p. 153.
11. F. Najafi, J. Mower, X. Hu, F. Bellei, P. Kharel, A. Dane, Y. Ivry, L. Cheong, K. Sunter, D. Englund, and K. Berggren, in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), Paper QF1A.6.
12. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Nat. Photonics 7, 883 (2013).
13. A. Allain, A. Han, and V. Bouchiat, Nat. Mater. 11, 590 (2012).
14. J. Coraux, L. Marty, N. Bendiab, and V. Bouchiat, Acc. Chem. Res. 46, 2193 (2013).
15. C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, Graphene microbolometers with superconducting contacts for terahertz photon detection, J. Low Temp. Phys. (published online).
16. P. Gupta, A. A. Rahman, N. Hatui, J. B. Parmar, B. A. Chalke, R. D. Bapat, S. C. Purandare, M. M. Deshmukh, and A. Bhattacharya, Appl. Phys. Lett. 103, 181108 (2013).
17. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
18. P. Gupta, A. A. Rahman, N. Hatui, M. R. Gokhale, M. M. Deshmukh, and A. Bhattacharya, J. Cryst. Growth 372, 105 (2013).
19. P. Gupta, P. D. Dongare, S. Grover, S. Dubey, H. Mamgain, A. Bhattacharya, and M. M. Deshmukh, Sci. Rep. 4, 3882 (2014).
20.See supplementary material at for additional details of graphene growth and NbN growth at low coverage and on different substrates. [Supplementary Material]
21. S. P. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 77, 214503 (2008).
22. R. Kaiser, W. Spengler, S. Schicktanz, and C. Politis, Phys. Status Solidi B 87, 565 (1978).
23. R. Werthamer, E. Helfland, and P. C. Honenberg, Phys. Rev. 147, 295 (1966).
24. M. Mondal, M. Chand, A. Kamlapure, J. Jesudasan, V. C. Bagwe, S. Kumar, G. Saraswat, V. Tripathi, and P. Raychaudhuri, J. Supercond. Novel Magn. 24, 341 (2011).
25. A. M. Finkel'stein, Physica B 197, 636 (1994).
26. D. W. Boukhvalov and M. I. Katsnelson, J. Phys. Condens. Matter 21, 344205 (2009).
27. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).
28. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).

Data & Media loading...


Article metrics loading...



NbN films are grown on chemical vapor deposited graphene using dc magnetron sputtering. The orientation and transition temperature of the deposited films is studied as a function of substrate temperature. A superconducting transition temperature of 14 K is obtained for highly oriented (111) films grown at substrate temperature of 150 °C, which is comparable to epitaxial films grown on MgO and sapphire substrates. These films show a considerably high upper critical field of ∼33 T. In addition, we demonstrate a process for obtaining flexible, free-standing NbN films by delaminating graphene from the substrate using a simple wet etching technique. These free-standing NbN layers can be transferred to any substrate, potentially enabling a range of novel superconducting thin-film applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd