1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/5/10.1063/1.4875356
1.
1. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
http://dx.doi.org/10.1088/0953-2048/25/6/063001
2.
2. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
http://dx.doi.org/10.1063/1.1388868
3.
3. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol'tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Sysz, A. Pearlman, A. Verevkin, and R. Sobolewski, Appl. Phys. Lett. 84, 5338 (2004).
http://dx.doi.org/10.1063/1.1764600
4.
4. G. Gol'tsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Yu. Vachtomin, I. Milostnaya, and G. Chulkova, J. Mod. Opt. 56, 1670 (2009).
http://dx.doi.org/10.1080/09500340903277750
5.
5. F. Marsili, A. Gaggero, L. H. Li, A. Surrente, R. Leoni, F. Lévy, and A. Fiore, Supercond. Sci. Technol. 22, 095013 (2009).
http://dx.doi.org/10.1088/0953-2048/22/9/095013
6.
6. G. Reithmaier, J. Senf, S. Lichtmannecker, T. Reichert, F. Flassig, A. Voss, R. Gross, and J. J. Finley, J. Appl. Phys. 113, 143507 (2013).
http://dx.doi.org/10.1063/1.4800838
7.
7. D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, A. Henry, E. Janzén, E. Pippel, J. Woltersdorf, and V. Belitsky, Supercond. Sci. Technol. 24, 035016 (2011).
http://dx.doi.org/10.1088/0953-2048/24/3/035016
8.
8. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, Nat. Commun. 3, 1325 (2012).
http://dx.doi.org/10.1038/ncomms2307
9.
9. Y. P. Gousev, G. N. Gol'tsman, B. S. Karasik, E. M. Gershenzon, A. D. Semenov, H. S. Barowski, R. S. Nebosis, K. F. Renk, and J. Infrared, Millimeter, Terahertz Waves 17, 317 (1996).
http://dx.doi.org/10.1007/BF02088154
10.
10. B. Guillet, V. Drakinskiy, R. Gunnarsson, O. Arthursson, L. Méchin, S. Cherednichenko, Y. Delorme, and J. M. Krieg, Proceedings of the 18th International Symposium on Space Terahertz Technology (National Radio Astronomy Observatory, Pasadena, CA, USA, 2007), p. 153.
11.
11. F. Najafi, J. Mower, X. Hu, F. Bellei, P. Kharel, A. Dane, Y. Ivry, L. Cheong, K. Sunter, D. Englund, and K. Berggren, in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), Paper QF1A.6.
12.
12. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Nat. Photonics 7, 883 (2013).
http://dx.doi.org/10.1038/nphoton.2013.253
13.
13. A. Allain, A. Han, and V. Bouchiat, Nat. Mater. 11, 590 (2012).
http://dx.doi.org/10.1038/nmat3335
14.
14. J. Coraux, L. Marty, N. Bendiab, and V. Bouchiat, Acc. Chem. Res. 46, 2193 (2013).
http://dx.doi.org/10.1021/ar3001519
15.
15. C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, Graphene microbolometers with superconducting contacts for terahertz photon detection, J. Low Temp. Phys. (published online).
http://dx.doi.org/10.1007/s10909-014-1127-3
16.
16. P. Gupta, A. A. Rahman, N. Hatui, J. B. Parmar, B. A. Chalke, R. D. Bapat, S. C. Purandare, M. M. Deshmukh, and A. Bhattacharya, Appl. Phys. Lett. 103, 181108 (2013).
http://dx.doi.org/10.1063/1.4827539
17.
17. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
18.
18. P. Gupta, A. A. Rahman, N. Hatui, M. R. Gokhale, M. M. Deshmukh, and A. Bhattacharya, J. Cryst. Growth 372, 105 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.03.020
19.
19. P. Gupta, P. D. Dongare, S. Grover, S. Dubey, H. Mamgain, A. Bhattacharya, and M. M. Deshmukh, Sci. Rep. 4, 3882 (2014).
http://dx.doi.org/10.1038/srep03882
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4875356 for additional details of graphene growth and NbN growth at low coverage and on different substrates. [Supplementary Material]
21.
21. S. P. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 77, 214503 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214503
22.
22. R. Kaiser, W. Spengler, S. Schicktanz, and C. Politis, Phys. Status Solidi B 87, 565 (1978).
http://dx.doi.org/10.1002/pssb.2220870220
23.
23. R. Werthamer, E. Helfland, and P. C. Honenberg, Phys. Rev. 147, 295 (1966).
http://dx.doi.org/10.1103/PhysRev.147.295
24.
24. M. Mondal, M. Chand, A. Kamlapure, J. Jesudasan, V. C. Bagwe, S. Kumar, G. Saraswat, V. Tripathi, and P. Raychaudhuri, J. Supercond. Novel Magn. 24, 341 (2011).
http://dx.doi.org/10.1007/s10948-010-1038-8
25.
25. A. M. Finkel'stein, Physica B 197, 636 (1994).
http://dx.doi.org/10.1016/0921-4526(94)90267-4
26.
26. D. W. Boukhvalov and M. I. Katsnelson, J. Phys. Condens. Matter 21, 344205 (2009).
http://dx.doi.org/10.1088/0953-8984/21/34/344205
27.
27. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
28.
28. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4875356
Loading
/content/aip/journal/aplmater/2/5/10.1063/1.4875356
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/5/10.1063/1.4875356
2014-05-12
2014-07-26

Abstract

NbN films are grown on chemical vapor deposited graphene using dc magnetron sputtering. The orientation and transition temperature of the deposited films is studied as a function of substrate temperature. A superconducting transition temperature of 14 K is obtained for highly oriented (111) films grown at substrate temperature of 150 °C, which is comparable to epitaxial films grown on MgO and sapphire substrates. These films show a considerably high upper critical field of ∼33 T. In addition, we demonstrate a process for obtaining flexible, free-standing NbN films by delaminating graphene from the substrate using a simple wet etching technique. These free-standing NbN layers can be transferred to any substrate, potentially enabling a range of novel superconducting thin-film applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/5/1.4875356.html;jsessionid=18nc60oztr319.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/5/10.1063/1.4875356&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4875356
10.1063/1.4875356
SEARCH_EXPAND_ITEM