Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/5/10.1063/1.4875457
1.
1. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, Sol. Energy Mater. Sol. Cells 90, 2129 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.12.005
2.
2. R. Hyam, R. K. Bhosale, W. Lee, S. H. Han, and B. Hannoyer, J. Nanosci. Nanotechnol. 10, 5894 (2010).
http://dx.doi.org/10.1166/jnn.2010.2475
3.
3. A. Hichou, M. Addou, M. Mansori, and J. Ebothé, Sol. Energy Mater. Sol. Cells 93, 609 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.014
4.
4. Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89,123102 (2006).
http://dx.doi.org/10.1063/1.2345278
5.
5. J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, and X. D. Chen, Nanotechnology 22,195706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/19/195706
6.
6. Y. Y. Kee, S. S. Tan, T. K. Yong, C. H. Nee, S. S. Yap, T. Y. Tou, G. Sáfrán, Z. E. Horváth, J. P. Moscatello, and Y. K. Yap, Nanotechnology 23,025706 (2012).
http://dx.doi.org/10.1088/0957-4484/23/2/025706
7.
7. C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. S. Torres, Nat. Nanotechnol. 4, 239 (2009).
http://dx.doi.org/10.1038/nnano.2008.418
8.
8. H. K. Yu, W. J. Dong, G. H. Jung, and J. L. Lee, ACS Nano 5,8026 (2011).
http://dx.doi.org/10.1021/nn2025836
9.
9. N. Horiuchi, Nat. Photonics 5, 332 (2011).
http://dx.doi.org/10.1038/nphoton.2011.115
10.
10. M. O. Orlandi, R. Aguiar, A. C. Lanfredi, E. Longo, J. A. Varela, and E. R. Leite, Appl. Phys. A. 80, 23 (2005).
http://dx.doi.org/10.1007/s00339-004-3027-x
11.
11. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, and M. Neil, Nano Lett. 3, 925 (2003).
http://dx.doi.org/10.1021/nl0342186
12.
12. G. Meng, T. Yanagida, K. Nagashima, H. Yoshida, M. Kanai, A. Klamchuen, F. Zhuge, Y. He, S. Rahong, X. Fang, S. Takeda, and T. Kawai, J. Am. Chem. Soc. 135,7033 (2013).
http://dx.doi.org/10.1021/ja401926u
13.
13. S. P. Chiu, H. F. Chung, Y. H. Lin, J. J. Kai, F. R. Chen, and J. J. Lin, Nanotechnology 20, 105203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/10/105203
14.
14. W. C. Chang, C. H. Kuo, C. C. Juan, P. J. Lee, Y. L. Chueh, and S. J. Lin, Nanoscale Res. Lett. 7, 684 (2012).
http://dx.doi.org/10.1186/1556-276X-7-684
15.
15. M. Zervos, A. Othonos, D. Tsokkou, J. Kioseoglou, E. Pavlidou, and Ph. Komninou, Phys. Status Solidi A 210, 226 (2013).
http://dx.doi.org/10.1002/pssa.201200403
16.
16. G. B. Gonzales, J. B. Cohen, J. H. Hwang, T. O. Mason, J. P. Hodges, and J. D. Jorgensen, J. Appl. Phys. 89, 2550 (2001).
http://dx.doi.org/10.1063/1.1341209
17.
17. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niderberger, and J. Ba, Thin Solid Films 515, 8637 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.03.166
18.
18. G. Frank and H. Kostlin, Appl. Phys. A. 27, 197 (1982).
http://dx.doi.org/10.1007/BF00619080
19.
19. D. Tsokou, M. Zervos, and A. Othonos, J. Appl. Phys. 106, 084307 (2009).
http://dx.doi.org/10.1063/1.3245339
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4875457
Loading
/content/aip/journal/aplmater/2/5/10.1063/1.4875457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/5/10.1063/1.4875457
2014-05-12
2016-12-09

Abstract

Indium tin oxide nanowires were grown by the reaction of In and Sn with O at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001). We obtain Sn doped InO nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO and suppression of InO permitting compositional and structural tuning from SnO to InO which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/5/1.4875457.html;jsessionid=YViWdoU6Wnqs8kdJm5cYy0vo.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/5/10.1063/1.4875457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/5/10.1063/1.4875457&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/5/10.1063/1.4875457'
Top,Right1,Right2,Right3,