NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, Sol. Energy Mater. Sol. Cells 90, 2129 (2006).
2. R. Hyam, R. K. Bhosale, W. Lee, S. H. Han, and B. Hannoyer, J. Nanosci. Nanotechnol. 10, 5894 (2010).
3. A. Hichou, M. Addou, M. Mansori, and J. Ebothé, Sol. Energy Mater. Sol. Cells 93, 609 (2009).
4. Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89,123102 (2006).
5. J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, and X. D. Chen, Nanotechnology 22,195706 (2011).
6. Y. Y. Kee, S. S. Tan, T. K. Yong, C. H. Nee, S. S. Yap, T. Y. Tou, G. Sáfrán, Z. E. Horváth, J. P. Moscatello, and Y. K. Yap, Nanotechnology 23,025706 (2012).
7. C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. S. Torres, Nat. Nanotechnol. 4, 239 (2009).
8. H. K. Yu, W. J. Dong, G. H. Jung, and J. L. Lee, ACS Nano 5,8026 (2011).
9. N. Horiuchi, Nat. Photonics 5, 332 (2011).
10. M. O. Orlandi, R. Aguiar, A. C. Lanfredi, E. Longo, J. A. Varela, and E. R. Leite, Appl. Phys. A. 80, 23 (2005).
11. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, and M. Neil, Nano Lett. 3, 925 (2003).
12. G. Meng, T. Yanagida, K. Nagashima, H. Yoshida, M. Kanai, A. Klamchuen, F. Zhuge, Y. He, S. Rahong, X. Fang, S. Takeda, and T. Kawai, J. Am. Chem. Soc. 135,7033 (2013).
13. S. P. Chiu, H. F. Chung, Y. H. Lin, J. J. Kai, F. R. Chen, and J. J. Lin, Nanotechnology 20, 105203 (2009).
14. W. C. Chang, C. H. Kuo, C. C. Juan, P. J. Lee, Y. L. Chueh, and S. J. Lin, Nanoscale Res. Lett. 7, 684 (2012).
15. M. Zervos, A. Othonos, D. Tsokkou, J. Kioseoglou, E. Pavlidou, and Ph. Komninou, Phys. Status Solidi A 210, 226 (2013).
16. G. B. Gonzales, J. B. Cohen, J. H. Hwang, T. O. Mason, J. P. Hodges, and J. D. Jorgensen, J. Appl. Phys. 89, 2550 (2001).
17. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niderberger, and J. Ba, Thin Solid Films 515, 8637 (2007).
18. G. Frank and H. Kostlin, Appl. Phys. A. 27, 197 (1982).
19. D. Tsokou, M. Zervos, and A. Othonos, J. Appl. Phys. 106, 084307 (2009).

Data & Media loading...


Article metrics loading...



Indium tin oxide nanowires were grown by the reaction of In and Sn with O at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001). We obtain Sn doped InO nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO and suppression of InO permitting compositional and structural tuning from SnO to InO which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism